Suppr超能文献

对恒定负状态方程参数[公式:见正文]的严格理论约束及其对宇宙晚期的影响。

Rigorous theoretical constraint on constant negative EoS parameter [Formula: see text] and its effect for the late Universe.

作者信息

Burgazli Alvina, Eingorn Maxim, Zhuk Alexander

机构信息

Department of Theoretical Physics, Odessa National University, Dvoryanskaya st. 2, Odessa, 65082 Ukraine.

Astronomical Observatory, Odessa National University, Dvoryanskaya st. 2, Odessa, 65082 Ukraine.

出版信息

Eur Phys J C Part Fields. 2015;75(3):118. doi: 10.1140/epjc/s10052-015-3335-7. Epub 2015 Mar 12.

Abstract

In this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, the Universe is filled with inhomogeneously distributed discrete structures (galaxies, groups and clusters of galaxies). Supposing that the Universe contains also the cosmological constant and a perfect fluid with a negative constant equation of state (EoS) parameter [Formula: see text] (e.g., quintessence, phantom or frustrated network of topological defects), we investigate scalar perturbations of the Friedmann-Robertson-Walker metrics due to inhomogeneities. Our analysis shows that, to be compatible with the theory of scalar perturbations, this perfect fluid, first, should be clustered and, second, should have the EoS parameter [Formula: see text]. In particular, this value corresponds to the frustrated network of cosmic strings. Therefore, the frustrated network of domain walls with [Formula: see text] is ruled out. A perfect fluid with [Formula: see text] neither accelerates nor decelerates the Universe. We also obtain the equation for the nonrelativistic gravitational potential created by a system of inhomogeneities. Due to the perfect fluid with [Formula: see text], the physically reasonable solutions take place for flat, open and closed Universes. This perfect fluid is concentrated around the inhomogeneities and results in screening of the gravitational potential.

摘要

在本文中,我们考虑宇宙演化后期且处于均匀性单元深处的情况。在这些尺度下,宇宙充满了分布不均匀的离散结构(星系、星系群和星系团)。假设宇宙还包含宇宙学常数以及具有负常数状态方程(EoS)参数[公式:见正文]的理想流体(例如, quintessence、幻影或拓扑缺陷的受挫网络),我们研究由于不均匀性导致的弗里德曼 - 罗伯逊 - 沃克度规的标量微扰。我们的分析表明,为了与标量微扰理论兼容,这种理想流体首先应该聚集,其次应该具有状态方程参数[公式:见正文]。特别地,这个值对应于宇宙弦的受挫网络。因此,具有[公式:见正文]的畴壁受挫网络被排除。具有[公式:见正文]的理想流体既不会使宇宙加速也不会使其减速。我们还得到了由不均匀性系统产生的非相对论引力势的方程。由于具有[公式:见正文]的理想流体,对于平坦、开放和封闭宇宙会出现物理上合理的解。这种理想流体集中在不均匀性周围并导致引力势的屏蔽。

相似文献

1
Rigorous theoretical constraint on constant negative EoS parameter [Formula: see text] and its effect for the late Universe.
Eur Phys J C Part Fields. 2015;75(3):118. doi: 10.1140/epjc/s10052-015-3335-7. Epub 2015 Mar 12.
2
Dynamical system analysis of FLRW models with Modified Chaplygin gas.
Sci Rep. 2021 Feb 2;11(1):2750. doi: 10.1038/s41598-020-80396-w.
3
The cosmological constant problem and running vacuum in the expanding universe.
Philos Trans A Math Phys Eng Sci. 2022 Aug 22;380(2230):20210182. doi: 10.1098/rsta.2021.0182. Epub 2022 Jul 4.
4
Lattice Universe: examples and problems.
Eur Phys J C Part Fields. 2015;75(5):217. doi: 10.1140/epjc/s10052-015-3445-2. Epub 2015 May 19.
6
Cosmologies with positive λ: hierarchies of future behaviour.
Philos Trans A Math Phys Eng Sci. 2024 Mar 4;382(2267):20230044. doi: 10.1098/rsta.2023.0044. Epub 2024 Jan 15.
7
Proposed physical mechanism that gives rise to cosmic inflation.
Sci Rep. 2023 Dec 9;13(1):21798. doi: 10.1038/s41598-023-49106-0.
8
The Higgs field and the resolution of the Cosmological Constant Paradox in the Weyl-geometrical Universe.
Philos Trans A Math Phys Eng Sci. 2017 Nov 13;375(2106). doi: 10.1098/rsta.2016.0388.
9
On stable exponential cosmological solutions with two factor spaces in (1+ m + 2)-dimensional Einstein-Gauss-Bonnet model with -term.
Philos Trans A Math Phys Eng Sci. 2022 May 2;380(2222):20210177. doi: 10.1098/rsta.2021.0177. Epub 2022 Mar 14.
10
Static and stationary dark fluid universes: a gravitoelectromagnetic perspective.
Sci Rep. 2022 Sep 2;12(1):15032. doi: 10.1038/s41598-022-18979-y.

引用本文的文献

1
Zero average values of cosmological perturbations as an indispensable condition for the theory and simulations.
Eur Phys J C Part Fields. 2015;75(8):381. doi: 10.1140/epjc/s10052-015-3598-z. Epub 2015 Aug 22.

本文引用的文献

1
Measuring the speed of sound of quintessence.
Phys Rev Lett. 2002 Mar 25;88(12):121301. doi: 10.1103/PhysRevLett.88.121301. Epub 2002 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验