Burgazli Alvina, Eingorn Maxim, Zhuk Alexander
Department of Theoretical Physics, Odessa National University, Dvoryanskaya st. 2, Odessa, 65082 Ukraine.
Astronomical Observatory, Odessa National University, Dvoryanskaya st. 2, Odessa, 65082 Ukraine.
Eur Phys J C Part Fields. 2015;75(3):118. doi: 10.1140/epjc/s10052-015-3335-7. Epub 2015 Mar 12.
In this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, the Universe is filled with inhomogeneously distributed discrete structures (galaxies, groups and clusters of galaxies). Supposing that the Universe contains also the cosmological constant and a perfect fluid with a negative constant equation of state (EoS) parameter [Formula: see text] (e.g., quintessence, phantom or frustrated network of topological defects), we investigate scalar perturbations of the Friedmann-Robertson-Walker metrics due to inhomogeneities. Our analysis shows that, to be compatible with the theory of scalar perturbations, this perfect fluid, first, should be clustered and, second, should have the EoS parameter [Formula: see text]. In particular, this value corresponds to the frustrated network of cosmic strings. Therefore, the frustrated network of domain walls with [Formula: see text] is ruled out. A perfect fluid with [Formula: see text] neither accelerates nor decelerates the Universe. We also obtain the equation for the nonrelativistic gravitational potential created by a system of inhomogeneities. Due to the perfect fluid with [Formula: see text], the physically reasonable solutions take place for flat, open and closed Universes. This perfect fluid is concentrated around the inhomogeneities and results in screening of the gravitational potential.
在本文中,我们考虑宇宙演化后期且处于均匀性单元深处的情况。在这些尺度下,宇宙充满了分布不均匀的离散结构(星系、星系群和星系团)。假设宇宙还包含宇宙学常数以及具有负常数状态方程(EoS)参数[公式:见正文]的理想流体(例如, quintessence、幻影或拓扑缺陷的受挫网络),我们研究由于不均匀性导致的弗里德曼 - 罗伯逊 - 沃克度规的标量微扰。我们的分析表明,为了与标量微扰理论兼容,这种理想流体首先应该聚集,其次应该具有状态方程参数[公式:见正文]。特别地,这个值对应于宇宙弦的受挫网络。因此,具有[公式:见正文]的畴壁受挫网络被排除。具有[公式:见正文]的理想流体既不会使宇宙加速也不会使其减速。我们还得到了由不均匀性系统产生的非相对论引力势的方程。由于具有[公式:见正文]的理想流体,对于平坦、开放和封闭宇宙会出现物理上合理的解。这种理想流体集中在不均匀性周围并导致引力势的屏蔽。