Suppr超能文献

基于过程光谱和模型空间设计近红外定标集的策略:过程分析技术的一种创新方法。

Strategy for design NIR calibration sets based on process spectrum and model space: An innovative approach for process analytical technology.

作者信息

Cárdenas V, Cordobés M, Blanco M, Alcalà M

机构信息

Department of Chemistry, Faculty of Sciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.

Department of Chemistry, Faculty of Sciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.

出版信息

J Pharm Biomed Anal. 2015 Oct 10;114:28-33. doi: 10.1016/j.jpba.2015.05.002. Epub 2015 May 8.

Abstract

The pharmaceutical industry is under stringent regulations on quality control of their products because is critical for both, productive process and consumer safety. According to the framework of "process analytical technology" (PAT), a complete understanding of the process and a stepwise monitoring of manufacturing are required. Near infrared spectroscopy (NIRS) combined with chemometrics have lately performed efficient, useful and robust for pharmaceutical analysis. One crucial step in developing effective NIRS-based methodologies is selecting an appropriate calibration set to construct models affording accurate predictions. In this work, we developed calibration models for a pharmaceutical formulation during its three manufacturing stages: blending, compaction and coating. A novel methodology is proposed for selecting the calibration set -"process spectrum"-, into which physical changes in the samples at each stage are algebraically incorporated. Also, we established a "model space" defined by Hotelling's T(2) and Q-residuals statistics for outlier identification - inside/outside the defined space - in order to select objectively the factors to be used in calibration set construction. The results obtained confirm the efficacy of the proposed methodology for stepwise pharmaceutical quality control, and the relevance of the study as a guideline for the implementation of this easy and fast methodology in the pharma industry.

摘要

制药行业在其产品质量控制方面受到严格监管,因为这对生产过程和消费者安全都至关重要。根据“过程分析技术”(PAT)框架,需要对过程有全面的了解并对制造过程进行逐步监测。近红外光谱(NIRS)结合化学计量学最近在药物分析中表现出高效、有用且稳健。开发基于NIRS的有效方法的一个关键步骤是选择合适的校准集来构建能够提供准确预测的模型。在这项工作中,我们针对一种药物制剂在其三个制造阶段(混合、压片和包衣)开发了校准模型。提出了一种用于选择校准集的新方法——“过程光谱”,其中代数合并了每个阶段样品中的物理变化。此外,我们建立了一个由霍特林T(2)和Q残差统计量定义的“模型空间”,用于识别异常值——在定义空间内/外——以便客观地选择用于校准集构建的因素。所获得的结果证实了所提出的逐步药物质量控制方法的有效性,以及该研究作为在制药行业实施这种简单快速方法的指导方针的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验