Li Lei, Shao Xia, Cole Erin L, Ohnmacht Stephan A, Ferrari Valentina, Hong Young T, Williamson David J, Fryer Tim D, Quesada Carole A, Sherman Phillip, Riss Patrick J, Scott Peter J H, Aigbirhio Franklin I
Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge , Cambridge CB2 1TN, U.K.
Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School , Ann Arbor, Michigan 48109, United States.
ACS Med Chem Lett. 2015 Mar 10;6(5):548-52. doi: 10.1021/acsmedchemlett.5b00044. eCollection 2015 May 14.
Quantifying glycogen synthase kinase-3 (GSK-3) activity in vivo using positron emission tomography (PET) imaging is of interest because dysregulation of GSK-3 is implicated in numerous diseases and neurological disorders for which GSK-3 inhibitors are being considered as therapeutic strategies. Previous PET radiotracers for GSK-3 have been reported, but none of the published examples cross the blood-brain barrier. Therefore, we have an ongoing interest in developing a brain penetrating radiotracer for GSK-3. To this end, we were interested in synthesis and preclinical evaluation of [(11)C]SB-216763, a high-affinity inhibitor of GSK-3 (K i = 9 nM; IC50 = 34 nM). Initial radiosyntheses of [(11)C]SB-216763 proved ineffective in our hands because of competing [3 + 3] sigmatropic shifts. Therefore, we have developed a novel one-pot two-step synthesis of [(11)C]SB-216763 from a 2,4-dimethoxybenzyl-protected maleimide precursor, which provided high specific activity [(11)C]SB-216763 in 1% noncorrected radiochemical yield (based upon [(11)C]CH3I) and 97-100% radiochemical purity (n = 7). Initial preclinical evaluation in rodent and nonhuman primate PET imaging studies revealed high initial brain uptake (peak rodent SUV = 2.5 @ 3 min postinjection; peak nonhuman primate SUV = 1.9 @ 5 min postinjection) followed by washout. Brain uptake was highest in thalamus, striatum, cortex, and cerebellum, areas known to be rich in GSK-3. These results make the arylindolemaleimide skeleton our lead scaffold for developing a PET radiotracer for quantification of GSK-3 density in vivo and ultimately translating it into clinical use.
使用正电子发射断层扫描(PET)成像技术在体内定量糖原合酶激酶-3(GSK-3)的活性备受关注,因为GSK-3的失调与多种疾病和神经紊乱有关,而GSK-3抑制剂正被视为治疗策略。此前已有关于GSK-3的PET放射性示踪剂的报道,但已发表的实例中没有一种能穿过血脑屏障。因此,我们一直致力于开发一种可穿透脑屏障的GSK-3放射性示踪剂。为此,我们对GSK-3的高亲和力抑制剂[(11)C]SB-216763(Ki = 9 nM;IC50 = 34 nM)的合成及临床前评估感兴趣。由于存在竞争性的[3 + 3]σ迁移重排,我们最初尝试合成[(11)C]SB-216763的方法在我们手中并不成功。因此,我们开发了一种从2,4-二甲氧基苄基保护的马来酰亚胺前体合成[(11)C]SB-216763的新颖的一锅两步法,该方法以1%的未校正放射化学产率(基于[(11)C]CH3I)和97 - 100%的放射化学纯度(n = 7)提供了高比活度的[(11)C]SB-216763。在啮齿动物和非人类灵长类动物的PET成像研究中的初步临床前评估显示,最初脑摄取量较高(注射后3分钟时啮齿动物的峰值SUV = 2.5;注射后5分钟时非人类灵长类动物的峰值SUV = 1.9),随后出现洗脱。丘脑、纹状体、皮层和小脑的脑摄取量最高,这些区域已知富含GSK-3。这些结果使芳基吲哚马来酰亚胺骨架成为我们开发用于体内定量GSK-3密度并最终转化为临床应用的PET放射性示踪剂的先导支架。