Suppr超能文献

[(11)C]SB - 216763的合成及初步体内研究:首个放射性标记的GSK - 3脑渗透性抑制剂

Synthesis and Initial in Vivo Studies with [(11)C]SB-216763: The First Radiolabeled Brain Penetrative Inhibitor of GSK-3.

作者信息

Li Lei, Shao Xia, Cole Erin L, Ohnmacht Stephan A, Ferrari Valentina, Hong Young T, Williamson David J, Fryer Tim D, Quesada Carole A, Sherman Phillip, Riss Patrick J, Scott Peter J H, Aigbirhio Franklin I

机构信息

Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge , Cambridge CB2 1TN, U.K.

Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School , Ann Arbor, Michigan 48109, United States.

出版信息

ACS Med Chem Lett. 2015 Mar 10;6(5):548-52. doi: 10.1021/acsmedchemlett.5b00044. eCollection 2015 May 14.

Abstract

Quantifying glycogen synthase kinase-3 (GSK-3) activity in vivo using positron emission tomography (PET) imaging is of interest because dysregulation of GSK-3 is implicated in numerous diseases and neurological disorders for which GSK-3 inhibitors are being considered as therapeutic strategies. Previous PET radiotracers for GSK-3 have been reported, but none of the published examples cross the blood-brain barrier. Therefore, we have an ongoing interest in developing a brain penetrating radiotracer for GSK-3. To this end, we were interested in synthesis and preclinical evaluation of [(11)C]SB-216763, a high-affinity inhibitor of GSK-3 (K i = 9 nM; IC50 = 34 nM). Initial radiosyntheses of [(11)C]SB-216763 proved ineffective in our hands because of competing [3 + 3] sigmatropic shifts. Therefore, we have developed a novel one-pot two-step synthesis of [(11)C]SB-216763 from a 2,4-dimethoxybenzyl-protected maleimide precursor, which provided high specific activity [(11)C]SB-216763 in 1% noncorrected radiochemical yield (based upon [(11)C]CH3I) and 97-100% radiochemical purity (n = 7). Initial preclinical evaluation in rodent and nonhuman primate PET imaging studies revealed high initial brain uptake (peak rodent SUV = 2.5 @ 3 min postinjection; peak nonhuman primate SUV = 1.9 @ 5 min postinjection) followed by washout. Brain uptake was highest in thalamus, striatum, cortex, and cerebellum, areas known to be rich in GSK-3. These results make the arylindolemaleimide skeleton our lead scaffold for developing a PET radiotracer for quantification of GSK-3 density in vivo and ultimately translating it into clinical use.

摘要

使用正电子发射断层扫描(PET)成像技术在体内定量糖原合酶激酶-3(GSK-3)的活性备受关注,因为GSK-3的失调与多种疾病和神经紊乱有关,而GSK-3抑制剂正被视为治疗策略。此前已有关于GSK-3的PET放射性示踪剂的报道,但已发表的实例中没有一种能穿过血脑屏障。因此,我们一直致力于开发一种可穿透脑屏障的GSK-3放射性示踪剂。为此,我们对GSK-3的高亲和力抑制剂[(11)C]SB-216763(Ki = 9 nM;IC50 = 34 nM)的合成及临床前评估感兴趣。由于存在竞争性的[3 + 3]σ迁移重排,我们最初尝试合成[(11)C]SB-216763的方法在我们手中并不成功。因此,我们开发了一种从2,4-二甲氧基苄基保护的马来酰亚胺前体合成[(11)C]SB-216763的新颖的一锅两步法,该方法以1%的未校正放射化学产率(基于[(11)C]CH3I)和97 - 100%的放射化学纯度(n = 7)提供了高比活度的[(11)C]SB-216763。在啮齿动物和非人类灵长类动物的PET成像研究中的初步临床前评估显示,最初脑摄取量较高(注射后3分钟时啮齿动物的峰值SUV = 2.5;注射后5分钟时非人类灵长类动物的峰值SUV = 1.9),随后出现洗脱。丘脑、纹状体、皮层和小脑的脑摄取量最高,这些区域已知富含GSK-3。这些结果使芳基吲哚马来酰亚胺骨架成为我们开发用于体内定量GSK-3密度并最终转化为临床应用的PET放射性示踪剂的先导支架。

相似文献

1
Synthesis and Initial in Vivo Studies with [(11)C]SB-216763: The First Radiolabeled Brain Penetrative Inhibitor of GSK-3.
ACS Med Chem Lett. 2015 Mar 10;6(5):548-52. doi: 10.1021/acsmedchemlett.5b00044. eCollection 2015 May 14.
2
Synthesis and evaluation of [(11)C]PyrATP-1, a novel radiotracer for PET imaging of glycogen synthase kinase-3β (GSK-3β).
Nucl Med Biol. 2014 Jul;41(6):507-12. doi: 10.1016/j.nucmedbio.2014.03.025. Epub 2014 Apr 2.
3
Radiosynthesis and in Vivo Evaluation of [C]A1070722, a High Affinity GSK-3 PET Tracer in Primate Brain.
ACS Chem Neurosci. 2017 Aug 16;8(8):1697-1703. doi: 10.1021/acschemneuro.6b00376. Epub 2017 May 17.
4
Development of [F]Maleimide-Based Glycogen Synthase Kinase-3β Ligands for Positron Emission Tomography Imaging.
ACS Med Chem Lett. 2017 Feb 2;8(3):287-292. doi: 10.1021/acsmedchemlett.6b00405. eCollection 2017 Mar 9.
5
The first synthesis of [(11)C]SB-216763, a new potential PET agent for imaging of glycogen synthase kinase-3 (GSK-3).
Bioorg Med Chem Lett. 2011 Jan 1;21(1):245-9. doi: 10.1016/j.bmcl.2010.11.026. Epub 2010 Nov 11.
6
Radiofluorination of oxazole-carboxamides for preclinical PET neuroimaging of GSK-3.
J Fluor Chem. 2021 May;245. doi: 10.1016/j.jfluchem.2021.109760. Epub 2021 Feb 21.
7
Radiosynthesis and Evaluation of a C-11 Radiotracer for Transient Receptor Potential Canonical 5 in the Brain.
Mol Imaging Biol. 2023 Apr;25(2):334-342. doi: 10.1007/s11307-022-01760-y. Epub 2022 Aug 11.
8
Metal Protein-Attenuating Compound for PET Neuroimaging: Synthesis and Preclinical Evaluation of [C]PBT2.
Mol Pharm. 2018 Feb 5;15(2):695-702. doi: 10.1021/acs.molpharmaceut.7b00936. Epub 2018 Jan 22.
9
Radiosynthesis and initial preclinical evaluation of [C]AZD1283 as a potential P2Y12R PET radiotracer.
Nucl Med Biol. 2022 Nov-Dec;114-115:143-150. doi: 10.1016/j.nucmedbio.2022.05.001. Epub 2022 May 20.

引用本文的文献

1
Evaluation of [F]F-CNBI and [F]F-CNPI PET Probes in GSK-3β Transgenic Mice.
ACS Chem Neurosci. 2025 Sep 3;16(17):3340-3353. doi: 10.1021/acschemneuro.5c00442. Epub 2025 Aug 15.
2
Radiosynthesis and evaluation of a novel F-labeled tracer for PET imaging of glycogen synthase kinase 3.
Am J Nucl Med Mol Imaging. 2024 Oct 15;14(5):327-336. doi: 10.62347/OBZS8887. eCollection 2024.
3
Synthesis and preliminary evaluation of novel PET probes for GSK-3 imaging.
Sci Rep. 2024 Jul 10;14(1):15960. doi: 10.1038/s41598-024-65943-z.
5
PET imaging of glycogen synthase kinase-3 in pancreatic cancer xenograft mouse models.
Am J Nucl Med Mol Imaging. 2022 Feb 15;12(1):1-14. eCollection 2022.
6
Glycogen Synthase Kinase-3 Inhibitors: Preclinical and Clinical Focus on CNS-A Decade Onward.
Front Mol Neurosci. 2022 Jan 21;14:792364. doi: 10.3389/fnmol.2021.792364. eCollection 2021.
7
The Repertoire of Small-Molecule PET Probes for Neuroinflammation Imaging: Challenges and Opportunities beyond TSPO.
J Med Chem. 2021 Dec 23;64(24):17656-17689. doi: 10.1021/acs.jmedchem.1c01571. Epub 2021 Dec 14.
8
Radiofluorination of oxazole-carboxamides for preclinical PET neuroimaging of GSK-3.
J Fluor Chem. 2021 May;245. doi: 10.1016/j.jfluchem.2021.109760. Epub 2021 Feb 21.
10
Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease.
Front Aging Neurosci. 2020 Sep 2;12:242. doi: 10.3389/fnagi.2020.00242. eCollection 2020.

本文引用的文献

1
The Role of Glycogen Synthase Kinase 3 Beta in Neuroinflammation and Pain.
J Pharm Pharmacol (Los Angel). 2013;1(1):001. doi: 10.13188/2327-204X.1000001.
2
Synthesis and evaluation of [(11)C]PyrATP-1, a novel radiotracer for PET imaging of glycogen synthase kinase-3β (GSK-3β).
Nucl Med Biol. 2014 Jul;41(6):507-12. doi: 10.1016/j.nucmedbio.2014.03.025. Epub 2014 Apr 2.
3
GSK3 alpha and beta are new functionally relevant targets of tivantinib in lung cancer cells.
ACS Chem Biol. 2014 Feb 21;9(2):353-8. doi: 10.1021/cb400660a. Epub 2013 Nov 20.
4
Glycogen synthase kinase-3 inhibitors as potent therapeutic agents for the treatment of Parkinson disease.
ACS Chem Neurosci. 2013 Feb 20;4(2):350-60. doi: 10.1021/cn300182g. Epub 2012 Dec 5.
7
Towards the preparation of radiolabeled 1-aryl-3-benzyl ureas: Radiosynthesis of [(11)C-carbonyl] AR-A014418 by [(11)C]CO(2) fixation.
Bioorg Med Chem Lett. 2012 Mar 1;22(5):2099-101. doi: 10.1016/j.bmcl.2011.12.139. Epub 2012 Jan 10.
8
GSK-3 Inhibitors: Preclinical and Clinical Focus on CNS.
Front Mol Neurosci. 2011 Oct 31;4:32. doi: 10.3389/fnmol.2011.00032. eCollection 2011.
9
Synthesis and biological evaluation of glycogen synthase kinase 3 (GSK-3) inhibitors: an fast and atom efficient access to 1-aryl-3-benzylureas.
Bioorg Med Chem Lett. 2011 Sep 15;21(18):5610-5. doi: 10.1016/j.bmcl.2011.06.131. Epub 2011 Jul 18.
10
The first synthesis of [(11)C]SB-216763, a new potential PET agent for imaging of glycogen synthase kinase-3 (GSK-3).
Bioorg Med Chem Lett. 2011 Jan 1;21(1):245-9. doi: 10.1016/j.bmcl.2010.11.026. Epub 2010 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验