Klumpp John, Brandl Alexander
Colorado State University, 399 MRB. 1681 Campus Delivery, Fort Collins, CO 80523-1681.
Health Phys. 2015 Jul;109(1):35-53. doi: 10.1097/HP.0000000000000291.
This paper proposes a novel Bayesian technique that allows for simultaneous source detection and count rate analysis. The technique involves using priors, which include a finite probability that the source count rate is exactly zero. Such priors are called "zero-inflated." Solving the posterior distribution of a zero-inflated count rate model provides the probability that the sample contains a source and a probability distribution for the source count rate if the source exists, without the need to perform redundant computations. Sampling from zero-inflated distributions is straightforward and can be accomplished with easily accessible open source software. In addition, zero-inflated priors lead to finite posterior probabilities of "no source," which is an easy-to-understand and satisfying result.
本文提出了一种新颖的贝叶斯技术,该技术可同时进行源检测和计数率分析。该技术涉及使用先验,其中包括源计数率恰好为零的有限概率。这种先验被称为“零膨胀”。求解零膨胀计数率模型的后验分布可提供样本包含源的概率以及源存在时源计数率的概率分布,而无需进行冗余计算。从零膨胀分布中采样很简单,并且可以使用易于获取的开源软件来完成。此外,零膨胀先验会导致“无源”的有限后验概率,这是一个易于理解且令人满意的结果。