Suppr超能文献

通过人工波纹破坏人类精子细胞的壁积累。

Disrupting the wall accumulation of human sperm cells by artificial corrugation.

作者信息

Guidobaldi H A, Jeyaram Y, Condat C A, Oviedo M, Berdakin I, Moshchalkov V V, Giojalas L C, Silhanek A V, Marconi V I

机构信息

IIByT-CONICET and FCEFyN, Universidad Nacional de Córdoba , X5016GCA Córdoba, Argentina.

Institute for Nanoscale Physics and Chemistry , KU Leuven, B-3001 Leuven, Belgium.

出版信息

Biomicrofluidics. 2015 Apr 24;9(2):024122. doi: 10.1063/1.4918979. eCollection 2015 Mar.

Abstract

Many self-propelled microorganisms are attracted to surfaces. This makes their dynamics in restricted geometries very different from that observed in the bulk. Swimming along walls is beneficial for directing and sorting cells, but may be detrimental if homogeneous populations are desired, such as in counting microchambers. In this work, we characterize the motion of human sperm cells ∼60 μm long, strongly confined to ∼25 μm shallow chambers. We investigate the nature of the cell trajectories between the confining surfaces and their accumulation near the borders. Observed cell trajectories are composed of a succession of quasi-circular and quasi-linear segments. This suggests that the cells follow a path of intermittent trappings near the top and bottom surfaces separated by stretches of quasi-free motion in between the two surfaces, as confirmed by depth resolved confocal microscopy studies. We show that the introduction of artificial petal-shaped corrugation in the lateral boundaries removes the tendency of cells to accumulate near the borders, an effect which we hypothesize may be valuable for microfluidic applications in biomedicine.

摘要

许多自推进微生物会被表面吸引。这使得它们在受限几何形状中的动力学与在本体中观察到的情况有很大不同。沿着壁游动有利于细胞的定向和分选,但如果需要均匀的细胞群体,比如在计数微腔中,这可能是有害的。在这项工作中,我们描述了长度约为60微米的人类精子细胞在约25微米浅腔中的运动,这些细胞被强烈限制在该浅腔内。我们研究了细胞在限制表面之间的轨迹性质以及它们在边界附近的聚集情况。观察到的细胞轨迹由一系列准圆形和准线性段组成。这表明细胞在顶部和底部表面附近遵循间歇性捕获的路径,两个表面之间由一段准自由运动隔开,深度分辨共聚焦显微镜研究证实了这一点。我们表明,在侧向边界引入人工花瓣形波纹消除了细胞在边界附近聚集的趋势,我们推测这种效应可能对生物医学中的微流体应用有价值。

相似文献

1
Disrupting the wall accumulation of human sperm cells by artificial corrugation.
Biomicrofluidics. 2015 Apr 24;9(2):024122. doi: 10.1063/1.4918979. eCollection 2015 Mar.
2
Two-dimensional slither swimming of sperm within a micrometre of a surface.
Nat Commun. 2015 Nov 10;6:8703. doi: 10.1038/ncomms9703.
3
Predominance of sperm motion in corners.
Sci Rep. 2016 May 23;6:26669. doi: 10.1038/srep26669.
4
Swimming trajectories of a three-sphere microswimmer near a wall.
J Chem Phys. 2018 Apr 7;148(13):134904. doi: 10.1063/1.5021027.
5
Hydrodynamics of sperm cells near surfaces.
Biophys J. 2010 Aug 9;99(4):1018-26. doi: 10.1016/j.bpj.2010.05.015.
6
Impact of external flow on the dynamics of swimming microorganisms near surfaces.
J Phys Condens Matter. 2014 Mar 19;26(11):115101. doi: 10.1088/0953-8984/26/11/115101. Epub 2014 Mar 3.
7
Dynamics and stability of Purcell's three-link microswimmer near a wall.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Dec;82(6 Pt 2):065302. doi: 10.1103/PhysRevE.82.065302. Epub 2010 Dec 15.
8
Understanding the onset of oscillatory swimming in microchannels.
Soft Matter. 2016 May 25;12(21):4704-8. doi: 10.1039/c6sm00939e.
9
Comparison of three-dimensional motion of bacteria with and without wall accumulation.
Phys Rev E. 2023 Jul;108(1-1):014409. doi: 10.1103/PhysRevE.108.014409.
10
Fight the flow: the role of shear in artificial rheotaxis for individual and collective motion.
Nanoscale. 2019 Jun 6;11(22):10944-10951. doi: 10.1039/c8nr10257k.

引用本文的文献

1
Evaluation of women's aging influence on sperm passage inside the fallopian tube using 3D dynamic mechanical modeling.
Front Bioeng Biotechnol. 2024 Apr 12;12:1324802. doi: 10.3389/fbioe.2024.1324802. eCollection 2024.
4
Hitting the wall: Human sperm velocity recovery under ultra-confined conditions.
Biomicrofluidics. 2020 Mar 30;14(2):024108. doi: 10.1063/1.5143194. eCollection 2020 Mar.
5
High-throughput characterisation of bull semen motility using differential dynamic microscopy.
PLoS One. 2019 Apr 10;14(4):e0202720. doi: 10.1371/journal.pone.0202720. eCollection 2019.
6
Microfluidics for sperm analysis and selection.
Nat Rev Urol. 2017 Dec;14(12):707-730. doi: 10.1038/nrurol.2017.175. Epub 2017 Oct 31.

本文引用的文献

1
Physics of microswimmers--single particle motion and collective behavior: a review.
Rep Prog Phys. 2015 May;78(5):056601. doi: 10.1088/0034-4885/78/5/056601. Epub 2015 Apr 28.
2
Hydrodynamic analysis of flagellated bacteria swimming near one and between two no-slip plane boundaries.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Mar;91(3):033012. doi: 10.1103/PhysRevE.91.033012. Epub 2015 Mar 20.
3
Zooming in to see the bigger picture: microfluidic and nanofabrication tools to study bacteria.
Science. 2014 Oct 24;346(6208):1251821. doi: 10.1126/science.1251821.
4
Failed escape: solid surfaces prevent tumbling of Escherichia coli.
Phys Rev Lett. 2014 Aug 8;113(6):068103. doi: 10.1103/PhysRevLett.113.068103. Epub 2014 Aug 7.
5
Dynamics of self-propelled particles under strong confinement.
Soft Matter. 2014 Aug 14;10(30):5609-17. doi: 10.1039/c4sm00975d.
6
Rheotaxis facilitates upstream navigation of mammalian sperm cells.
Elife. 2014 May 27;3:e02403. doi: 10.7554/eLife.02403.
7
Geometrical guidance and trapping transition of human sperm cells.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032720. doi: 10.1103/PhysRevE.89.032720. Epub 2014 Mar 28.
8
4D tracking of clinical seminal samples for quantitative characterization of motility parameters.
Biomed Opt Express. 2014 Feb 11;5(3):690-700. doi: 10.1364/BOE.5.000690. eCollection 2014 Mar 1.
9
Trapping self-propelled micromotors with microfabricated chevron and heart-shaped chips.
Lab Chip. 2014 May 7;14(9):1515-8. doi: 10.1039/c3lc51419f. Epub 2014 Mar 19.
10
Make it spin: individual trapping of sperm for analysis and recovery using micro-contact printing.
Lab Chip. 2014 Aug 7;14(15):2635-41. doi: 10.1039/c4lc00050a. Epub 2014 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验