Schiavini Paolo, Pottel Joshua, Moitessier Nicolas, Auclair Karine
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC, H3A 0B8 (Canada).
ChemMedChem. 2015 Jul;10(7):1174-83. doi: 10.1002/cmdc.201500114. Epub 2015 May 28.
As part of the development of cyanothiazolidine-based prolyl oligopeptidase inhibitors, initial metabolism studies suggested multiple sites of oxidation by P450 enzymes. Surprisingly, in-depth investigations revealed that epimerization at multiple stereogenic centers was responsible for the conversion of the single primary metabolite into a panel of secondary metabolites. The rapid isomerization of all seven detected molecules precluded the use of NMR spectroscopy or X-ray crystallography for complete structural determination, presenting an interesting structure elucidation challenge. Through a combination of LC-MS analysis, synthetic work, deuterium exchange studies, and computational predictions, we were able to characterize all metabolites and to elucidate their dynamic behavior in solution. In the context of drug development, this study reveals that cyanothiazolidine moieties are problematic due to their rapid P450-mediated oxidation and the unpredictable stability of the corresponding metabolites.
作为基于氰噻唑烷的脯氨酰寡肽酶抑制剂开发的一部分,初步代谢研究表明存在多个被细胞色素P450酶氧化的位点。令人惊讶的是,深入研究发现多个手性中心的差向异构化导致单一主要代谢物转化为一系列次要代谢物。所有七个检测到的分子的快速异构化使得无法使用核磁共振光谱或X射线晶体学进行完整的结构测定,这带来了一个有趣的结构解析挑战。通过液相色谱-质谱分析、合成工作、氘交换研究和计算预测相结合,我们能够表征所有代谢物并阐明它们在溶液中的动态行为。在药物开发的背景下,这项研究表明氰噻唑烷部分存在问题,因为它们会通过细胞色素P450介导快速氧化,且相应代谢物的稳定性不可预测。