Laboratoire de Physique, CNRS UMR 5672, École Normale Supérieure de Lyon, Université de Lyon, 46 Allée d'Italie, F-69364 Lyon, France.
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
Phys Rev Lett. 2015 May 15;114(19):195302. doi: 10.1103/PhysRevLett.114.195302. Epub 2015 May 11.
Feshbach resonances-namely, resonances between an unbound two-body (atomic) state and a bound (molecular) state, differing in magnetic moment-are a unique tool to tune the interaction properties of ultracold atoms. Here we show that the spin-changing interactions, coherently coupling the atomic and molecular states, can act as a novel mechanism to stabilize an insulating phase-the Feshbach insulator-for bosons in an optical lattice close to a narrow Feshbach resonance. Making use of quantum Monte Carlo simulations and mean-field theory, we show that the Feshbach insulator appears around the resonance, preventing the system from collapsing when the effective atomic scattering length becomes negative. On the atomic side of the resonance, the transition from condensate to Feshbach insulator has a characteristic first-order nature, due to the simultaneous loss of coherence in the atomic and molecular components. These features appear clearly in the ground-state phase diagram of, e.g., ^{87}Rb around its 414 G resonance, and they are therefore directly amenable to experimental observation.
费希巴赫共振——即束缚态(分子态)与非束缚态(原子态)之间的共振,它们在磁矩上存在差异——是调节超冷原子相互作用特性的独特工具。在这里,我们展示了自旋变化相互作用可以作为一种新的机制,稳定玻色子在接近狭窄费希巴赫共振的光晶格中的绝缘相——费希巴赫绝缘体。利用量子蒙特卡罗模拟和平均场理论,我们表明费希巴赫绝缘体出现在共振附近,当有效原子散射长度变为负值时,防止系统崩溃。在共振的原子侧,由于原子和分子分量的相干性同时丧失,从凝聚相到费希巴赫绝缘体的转变具有特征的一级性质。这些特征在例如^{87}Rb 围绕其 414G 共振的基态相图中清晰可见,因此可以直接进行实验观测。