Suppr超能文献

体外截断天线叶绿素后来自光系统I的增强光电流。

Enhanced photocurrent from Photosystem I upon in vitro truncation of the antennae chlorophyll.

作者信息

Carter J Ridge, Baker David R, Witt T Austin, Bruce Barry D

机构信息

Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA.

Sensors and Electron Devices Directorate, United States Army Research Laboratory, Adelphi, MD, 20783, USA.

出版信息

Photosynth Res. 2016 Feb;127(2):161-70. doi: 10.1007/s11120-015-0162-5. Epub 2015 Jun 2.

Abstract

Current effects on climate change and dwindling fossil fuel reserves require new materials and methods to convert solar energy into a viable clean energy source. Recent progress in the direct conversion of light into photocurrent has been well documented using Photosystem I. In plants, PSI consists of a core complex and multiple light-harvesting complexes, denoted LHCI and LHCII. Most of the methods for isolating PSI from plants involve a selective, detergent solubilization from thylakoids followed by sucrose gradient density centrifugation. These processes isolate one variant of PSI with a specific ratio of Chl:P700. In this study, we have developed a simple and potentially scalable method for isolating multiple PSI variants using Hydroxyapatite chromatography, which has been well documented in other Photosystem I isolation protocols. By varying the wash conditions, we show that it is possible to change the Chl:P700 ratios. These different PSI complexes were cast into a PSI-Nafion-osmium polymer film that enabled their photoactivity to be measured. Photocurrent increases nearly 400% between highly washed and untreated solutions based on equal chlorophyll content. Importantly, the mild washing conditions remove peripheral Chl and some LHCI without inhibiting the photochemical activity of PSI as suggested by SDS-PAGE analysis. This result could indicate that more P700 could be loaded per surface area for biohybrid devices. Compared with other PSI isolations, this protocol also allows isolation of multiple PSI variants without loss of photochemical activity.

摘要

当前气候变化的影响以及化石燃料储备的减少,需要新的材料和方法将太阳能转化为可行的清洁能源。利用光系统I将光直接转化为光电流的最新进展已有充分记录。在植物中,光系统I由一个核心复合体和多个捕光复合体组成,分别称为LHCI和LHCII。大多数从植物中分离光系统I的方法包括从类囊体中进行选择性的去污剂增溶,然后进行蔗糖梯度密度离心。这些过程分离出一种具有特定Chl:P700比例的光系统I变体。在本研究中,我们开发了一种简单且具有潜在可扩展性的方法,使用羟基磷灰石色谱法分离多种光系统I变体,这在其他光系统I分离方案中已有充分记录。通过改变洗涤条件,我们表明可以改变Chl:P700的比例。将这些不同的光系统I复合物制成光系统I-全氟磺酸-锇聚合物膜,以便能够测量它们的光活性。基于相等的叶绿素含量,在高度洗涤和未处理的溶液之间,光电流增加了近400%。重要的是,温和的洗涤条件去除了外周叶绿素和一些LHCI,而如SDS-PAGE分析所示,并未抑制光系统I的光化学活性。这一结果可能表明,对于生物混合装置而言,每单位表面积可以负载更多的P700。与其他光系统I分离方法相比,该方案还允许分离多种光系统I变体而不损失光化学活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验