IEEE Trans Image Process. 2015 Nov;24(11):3415-24. doi: 10.1109/TIP.2015.2442915. Epub 2015 Jun 9.
We present a technique for multiple foreground video co-segmentation in a set of videos. This technique is based on category-independent object proposals. To identify the foreground objects in each frame, we examine the properties of the various regions that reflect the characteristics of foregrounds, considering the intra-video coherence of the foreground as well as the foreground consistency among the different videos in the set. Multiple foregrounds are handled via a multi-state selection graph in which a node representing a video frame can take multiple labels that correspond to different objects. In addition, our method incorporates an indicator matrix that for the first time allows accurate handling of cases with common foreground objects missing in some videos, thus preventing irrelevant regions from being misclassified as foreground objects. An iterative procedure is proposed to optimize our new objective function. As demonstrated through comprehensive experiments, this object-based multiple foreground video co-segmentation method compares well with related techniques that co-segment multiple foregrounds.
我们提出了一种在一组视频中进行多个前景视频共同分割的技术。该技术基于与类别无关的目标提议。为了识别每一帧中的前景对象,我们检查了反映前景特征的各种区域的属性,同时考虑了前景在视频内的连贯性以及集合中不同视频之间的前景一致性。多个前景通过一个多状态选择图来处理,该图中的一个节点可以表示一个视频帧,并可以采用多个对应不同对象的标签。此外,我们的方法还包含一个指示矩阵,这是首次允许准确处理某些视频中缺少常见前景对象的情况,从而防止将不相关的区域错误分类为前景对象。我们提出了一种迭代过程来优化我们的新目标函数。通过全面的实验证明,这种基于对象的多个前景视频共同分割方法与共同分割多个前景的相关技术相比表现良好。