‡Platform Technology Laboratory, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803, Republic of Korea.
ACS Appl Mater Interfaces. 2015 Jul 15;7(27):14699-707. doi: 10.1021/acsami.5b03392. Epub 2015 Jul 1.
The oxygen permeation flux of dual-phase membranes, Ce0.9Gd0.1O2-δ-La0.7Sr0.3MnO3±δ (GDC/LSM), has been systematically studied as a function of their LSM content, thickness, and coating material. The electronic percolation threshold of this GDC/LSM membrane occurs at about 20 vol % LSM. The coated LSM20 (80 vol % GDC, 20 vol % LSM) dual-phase membrane exhibits a maximum oxygen flux of 2.2 mL·cm(-2)·min(-1) at 850 °C, indicating that to enhance the oxygen permeation flux, the LSM content should be adjusted to the minimum value at which electronic percolation is maintained. The oxygen ion conductivity of the dual-phase membrane is reliably calculated from oxygen flux data by considering the effects of surface oxygen exchange. Thermal cycling tests confirm the mechanical stability of the membrane. Furthermore, a dual-phase membrane prepared here with a cobalt-free coating remains chemically stable in a CO2 atmosphere at a lower temperature (800 °C) than has previously been achieved.
双相膜(Ce0.9Gd0.1O2-δ-La0.7Sr0.3MnO3±δ,GDC/LSM)的氧气渗透通量已作为其 LSM 含量、厚度和涂层材料的函数进行了系统研究。该 GDC/LSM 膜的电子渗流阈值出现在约 20 vol% LSM 处。涂覆的 LSM20(80 vol% GDC,20 vol% LSM)双相膜在 850°C 下表现出最大的氧气通量为 2.2 mL·cm(-2)·min(-1),表明为了提高氧气渗透通量,LSM 含量应调整到保持电子渗流的最低值。通过考虑表面氧交换的影响,从氧气通量数据可靠地计算出双相膜的氧离子电导率。热循环测试证实了膜的机械稳定性。此外,与之前的研究相比,这里制备的具有无钴涂层的双相膜在较低温度(800°C)的 CO2 气氛中仍保持化学稳定性。