Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
Nanoscale. 2015 Jul 21;7(27):11702-11. doi: 10.1039/c5nr02246k. Epub 2015 Jun 23.
We demonstrate the fabrication of a core-satellite structured BiOBr-CdS photocatalyst with highly efficient photocatalytic reactivity via a facile in situ crystallization approach at room temperature. The transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM) results reveal that the BiOBr flakes are surrounded by CdS particles. The coverage of the satellites on the surface of the BiOBr nanosheets could be controlled by changing the content of the CdS, which contributes to the enhanced level of photocatalytic performance. The UV-vis diffuse reflection spectra demonstrate that the visible light absorption of the BiOBr-CdS photocatalyst is also enhanced by the CdS loaded. The excellent structural and spectral properties endow the BiOBr-CdS heterojunctions with improved photocatalytic performance pertaining to bisphenol A (BPA) degradation and photocurrent generation. Under visible light irradiation, the optimum photocatalytic activity of BiOBr-CdS at a molar ratio of 1 : 5 (CdS/BiOBr) is almost 2.8 times and 24.6 times as high as that of pure BiOBr and CdS. The remarkably enhanced photoreactivity should be attributed to the match in the energy levels and close core-satellite structural coupling between the CdS and BiOBr, which greatly facilitates the separation and transfer of photoinduced electron-hole pairs, as confirmed by photoluminescence (PL) and electrochemical impedance spectra (EIS). The present work sheds new light on the construction of highly efficient core-satellite heterojunctional photocatalysts for practical applications.
我们通过在室温下的简便原位结晶方法,展示了一种具有高效光催化活性的核-壳结构 BiOBr-CdS 光催化剂的制备。透射电子显微镜(TEM)和高分辨率透射电子显微镜(HR-TEM)结果表明,BiOBr 薄片被 CdS 颗粒包围。通过改变 CdS 的含量,可以控制卫星在 BiOBr 纳米片表面的覆盖度,从而提高光催化性能。紫外-可见漫反射光谱表明,加载的 CdS 也增强了 BiOBr-CdS 光催化剂对可见光的吸收。优异的结构和光谱性能赋予了 BiOBr-CdS 异质结改善的光催化性能,涉及双酚 A(BPA)降解和光电流产生。在可见光照射下,摩尔比为 1:5(CdS/BiOBr)的 BiOBr-CdS 的最佳光催化活性几乎是纯 BiOBr 和 CdS 的 2.8 倍和 24.6 倍。显著增强的光反应性应归因于 CdS 和 BiOBr 之间能级匹配和紧密的核-壳结构耦合,这大大促进了光生电子-空穴对的分离和转移,这一点通过光致发光(PL)和电化学阻抗谱(EIS)得到了证实。本工作为实际应用中构建高效核-壳异质结光催化剂提供了新的思路。