Gong Shida, Luo Qiong, Feng Xiangfei, Li Qian-shu, Xie Yaoming, King R Bruce, Schaefer Henry F
MOE Key Laboratory of Theoretical Chemistry of the Environment, Center for Computational Quantum Chemistry, South China Normal University, Guangzhou 510631, P. R. China.
Phys Chem Chem Phys. 2015 Aug 21;17(31):20100-13. doi: 10.1039/c5cp01648g.
The complete series of Cp2M2(μ-C6F6) (M = Ti, V, Cr, Mn, Fe, Co, Ni) structures have been examined theoretically for comparison with their unsubstituted Cp2M2(μ-C6H6) analogues. The singlet triple decker sandwich titanium complex Cp2Ti2(η(6),η(6)-C6F6) with a closed shell electronic structure and a non-planar C6F6 ring is preferred energetically by a wide margin (>20 kcal mol(-1)) over other isomers and spin states. This is in contrast to the hydrogen analogue for which related triplet spin state structures are clearly preferred. A similar low-energy triple-decker sandwich Cp2V2(η(6),η(6)-C6F6) structure is found for vanadium but with a quintet spin state. The later transition metals from Cr to Ni energetically prefer the so-called "rice-ball" cis-Cp2M2(μ-C6F6) structures with varying hapticities of metal-ring bonding, a range of formal orders of metal-metal bonding, and varying spin states depending on the metal atom. Thus the lowest energy Cp2Cr2(μ-C6F6) structures are triplet and quintet structures with pentahapto-trihapto η(5),η(3)-μ-C6F6 rings and formal Cr=Cr double bonds. This contrasts with the structure of Cp2Cr2(μ-C6H6) having a bis(tetrahapto) η(4),η(4)-C6H6 ring and a formal Cr-Cr quadruple bond. The lowest energy Cp2Mn2(μ-C6F6) structures are trans and cis quintet spin state structures. This contrasts with Cp2Mn2(μ-C6H6) for which a closed-shell singlet triple decker sandwich structure is preferred. The lowest energy Cp2Fe2(μ-C6F6) structure is a triplet cis structure with a tetrahapto-dihapto η(4),η(2)-μ-C6F6 ring and a formal Fe-Fe single bond. The lowest energy Cp2Co2(μ-C6F6) structures are singlet spin state structures with formal M-M single bonds and either bridging bis(trihapto) η(3),η(3)-C6F6 or tetrahapto-dihapto η(4),η(2)-C6F6 rings. For Cp2Ni2(μ-C6F6) low energy singlet cis and trans structures are both found. The singlet cis-Cp2Ni2(μ-C6F6) structure has a Ni-Ni single bond of length ∼2.5 Å and a bridging bis(dihapto) η(2),η(2)-C6F6 ligand with an uncomplexed C=C double bond. The singlet trans-Cp2Ni2(μ-C6F6) structure has a bis(trihapto) η(3),η(3)-C6F6 ligand.
对Cp2M2(μ-C6F6)(M = Ti、V、Cr、Mn、Fe、Co、Ni)的完整系列结构进行了理论研究,以便与未取代的Cp2M2(μ-C6H6)类似物进行比较。具有闭壳层电子结构和非平面C6F6环的单重态三层夹心钛配合物Cp2Ti2(η(6),η(6)-C6F6)在能量上比其他异构体和自旋态具有很大优势(>20千卡/摩尔)。这与氢类似物形成对比,对于氢类似物,相关的三重态自旋态结构明显更受青睐。发现钒有类似的低能量三层夹心Cp2V2(η(6),η(6)-C6F6)结构,但具有五重态自旋态。从Cr到Ni的后过渡金属在能量上更倾向于所谓的“饭团”顺式Cp2M2(μ-C6F6)结构,其金属-环键合的配位率不同、金属-金属键合的形式键级范围不同,并且自旋态因金属原子而异。因此,能量最低的Cp2Cr2(μ-C6F6)结构是具有五重键-三重键η(5),η(3)-μ-C6F6环和形式Cr=Cr双键的三重态和五重态结构。这与具有双(四重键)η(4),η(4)-C6H6环和形式Cr-Cr四重键的Cp2Cr2(μ-C6H6)结构形成对比。能量最低的Cp2Mn2(μ-C6F6)结构是反式和顺式五重态自旋态结构。这与Cp2Mn2(μ-C6H6)形成对比,对于后者,闭壳层单重态三层夹心结构更受青睐。能量最低的Cp2Fe2(μ-C6F6)结构是具有四重键-二重键η(4),η(2)-μ-C6F6环和形式Fe-Fe单键的三重态顺式结构。能量最低的Cp2Co2(μ-C6F6)结构是具有形式M-M单键以及桥连双(三重键)η(3),η(3)-C6F6或四重键-二重键η(4),η(2)-C6F6环的单重态自旋态结构。对于Cp2Ni2(μ-C6F6),发现了低能量的单重态顺式和反式结构。单重态顺式-Cp2Ni2(μ-C6F6)结构具有长度约为2.5 Å的Ni-Ni单键和带有未配位C=C双键的桥连双(二重键)η(2),η(2)-C6F6配体。单重态反式-Cp2Ni2(μ-C6F6)结构具有双(三重键)η(3),η(3)-C6F6配体。