Suppr超能文献

盐胁迫下涉及Ca(2+)和Rboh/Nox介导的活性氧产生的植物信号网络。

Plant signaling networks involving Ca(2+) and Rboh/Nox-mediated ROS production under salinity stress.

作者信息

Kurusu Takamitsu, Kuchitsu Kazuyuki, Tada Yuichi

机构信息

School of Bioscience and Biotechnology, Tokyo University of Technology Hachioji, Japan ; Department of Applied Biological Science, Tokyo University of Science Noda, Japan ; Research Institute for Science and Technology, Tokyo University of Science Noda, Japan.

Department of Applied Biological Science, Tokyo University of Science Noda, Japan ; Research Institute for Science and Technology, Tokyo University of Science Noda, Japan.

出版信息

Front Plant Sci. 2015 Jun 10;6:427. doi: 10.3389/fpls.2015.00427. eCollection 2015.

Abstract

Salinity stress, which induces both ionic and osmotic damage, impairs plant growth and causes severe reductions in crop yield. Plants are equipped with defense responses against salinity stress such as regulation of ion transport including Na(+) and K(+), accumulation of compatible solutes and stress-related gene expression. The initial Ca(2+) influx mediated by plasma membrane ion channels has been suggested to be crucial for the adaptive signaling. NADPH oxidase (Nox)-mediated production of reactive oxygen species (ROS) has also been suggested to play crucial roles in regulating adaptation to salinity stress in several plant species including halophytes. Respiratory burst oxidase homolog (Rboh) proteins show the ROS-producing Nox activity, which are synergistically activated by the binding of Ca(2+) to EF-hand motifs as well as Ca(2+)-dependent phosphorylation. We herein review molecular identity, structural features and roles of the Ca(2+)-permeable channels involved in early salinity and osmotic signaling, and comparatively discuss the interrelationships among spatiotemporal dynamic changes in cytosolic concentrations of free Ca(2+), Rboh-mediated ROS production, and downstream signaling events during salinity adaptation in planta.

摘要

盐分胁迫会引发离子损伤和渗透损伤,损害植物生长并导致作物产量大幅下降。植物具备针对盐分胁迫的防御反应,如调节包括Na(+)和K(+)在内的离子运输、积累相容性溶质以及与胁迫相关的基因表达。由质膜离子通道介导的初始Ca(2+)内流被认为对适应性信号传导至关重要。NADPH氧化酶(Nox)介导的活性氧(ROS)产生也被认为在包括盐生植物在内的几种植物物种中调节对盐分胁迫的适应过程中发挥关键作用。呼吸爆发氧化酶同源物(Rboh)蛋白表现出产生ROS的Nox活性,其通过Ca(2+)与EF-手基序的结合以及Ca(2+)依赖性磷酸化而协同激活。我们在此综述参与早期盐分和渗透信号传导的Ca(2+)通透通道的分子特性、结构特征和作用,并比较讨论植物在盐分适应过程中细胞质游离Ca(2+)浓度的时空动态变化、Rboh介导的ROS产生和下游信号事件之间的相互关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d31/4461821/8d85da8d2e8e/fpls-06-00427-g001.jpg

相似文献

1
Plant signaling networks involving Ca(2+) and Rboh/Nox-mediated ROS production under salinity stress.
Front Plant Sci. 2015 Jun 10;6:427. doi: 10.3389/fpls.2015.00427. eCollection 2015.
2
A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF.
Biochim Biophys Acta. 2013 Dec;1833(12):2775-2780. doi: 10.1016/j.bbamcr.2013.06.024. Epub 2013 Jul 16.
3
Genome-wide mining of respiratory burst homologs and its expression in response to biotic and abiotic stresses in Triticum aestivum.
Genes Genomics. 2019 Sep;41(9):1027-1043. doi: 10.1007/s13258-019-00821-x. Epub 2019 May 28.
4
NADPH oxidases and the evolution of plant salinity tolerance.
Plant Cell Environ. 2020 Dec;43(12):2957-2968. doi: 10.1111/pce.13907. Epub 2020 Oct 26.
5
Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation.
J Biol Chem. 2008 Apr 4;283(14):8885-92. doi: 10.1074/jbc.M708106200. Epub 2008 Jan 23.
8
Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet.
J Exp Bot. 2017 Feb 1;68(5):1283-1298. doi: 10.1093/jxb/erx019.
9
Quantitative Analysis for ROS-Producing Activity and Regulation of Plant NADPH Oxidases in HEK293T Cells.
Methods Mol Biol. 2022;2526:107-122. doi: 10.1007/978-1-0716-2469-2_8.
10
Comparative analysis of the reactive oxygen species-producing enzymatic activity of Arabidopsis NADPH oxidases.
Plant J. 2019 Apr;98(2):291-300. doi: 10.1111/tpj.14212. Epub 2019 Feb 14.

引用本文的文献

1
Functional analysis and interaction networks of Rboh in poplar under abiotic stress.
Front Plant Sci. 2025 Feb 26;16:1553057. doi: 10.3389/fpls.2025.1553057. eCollection 2025.
2
Responses of Tomato Photosystem II Photochemistry to Pegylated Zinc-Doped Ferrite Nanoparticles.
Nanomaterials (Basel). 2025 Feb 13;15(4):288. doi: 10.3390/nano15040288.
5
Hormetic Response of Photosystem II Function Induced by Nontoxic Calcium Hydroxide Nanoparticles.
Int J Mol Sci. 2024 Jul 30;25(15):8350. doi: 10.3390/ijms25158350.
6
Sound waves alter the viability of tobacco cells via changes in cytosolic calcium, membrane integrity, and cell wall composition.
PLoS One. 2024 Mar 11;19(3):e0299055. doi: 10.1371/journal.pone.0299055. eCollection 2024.
7
Involvement of GLR-mediated nitric oxide effects on ROS metabolism in Arabidopsis plants under salt stress.
J Plant Res. 2024 May;137(3):485-503. doi: 10.1007/s10265-024-01528-1. Epub 2024 Mar 6.
9

本文引用的文献

1
NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana.
J Plant Physiol. 2015 Feb 1;174:5-15. doi: 10.1016/j.jplph.2014.08.022. Epub 2014 Oct 23.
2
Reactive oxygen species in cell wall metabolism and development in plants.
Phytochemistry. 2015 Apr;112:22-32. doi: 10.1016/j.phytochem.2014.09.016. Epub 2014 Oct 17.
3
OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis.
Nature. 2014 Oct 16;514(7522):367-71. doi: 10.1038/nature13593. Epub 2014 Aug 27.
5
A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling.
Trends Plant Sci. 2014 Oct;19(10):623-30. doi: 10.1016/j.tplants.2014.06.013. Epub 2014 Jul 23.
7
Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants.
Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6497-502. doi: 10.1073/pnas.1319955111. Epub 2014 Mar 24.
8
Plant salt-tolerance mechanisms.
Trends Plant Sci. 2014 Jun;19(6):371-9. doi: 10.1016/j.tplants.2014.02.001. Epub 2014 Mar 14.
9
Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity.
Mol Cell. 2014 Apr 10;54(1):43-55. doi: 10.1016/j.molcel.2014.02.021. Epub 2014 Mar 12.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验