Suppr超能文献

重度肺动脉高压与右心室代谢底物摄取改变有关。

Severe pulmonary hypertension is associated with altered right ventricle metabolic substrate uptake.

作者信息

Graham Brian B, Kumar Rahul, Mickael Claudia, Sanders Linda, Gebreab Liya, Huber Kendra M, Perez Mario, Smith-Jones Peter, Serkova Natalie J, Tuder Rubin M

机构信息

Department of Medicine, University of Colorado Denver, Aurora, Colorado;

Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado; and.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2015 Sep 1;309(5):L435-40. doi: 10.1152/ajplung.00169.2015. Epub 2015 Jun 26.

Abstract

In severe pulmonary hypertension (SPH), prior studies have shown an increase in right ventricle (RV) uptake of glucose, but it is unclear whether there is a change in the relative utilization of fatty acids. We hypothesized that in the RV in SPH, as in left ventricular (LV) failure, there is altered substrate utilization, with increased glucose uptake and decreased fatty acid uptake. SPH was induced in rats by treatment with the VEGF receptor inhibitor SU5416 and 3 wk of hypoxia (10% FiO2 ), followed by an additional 4 wk of normoxia (SU-Hx group). Control rats were treated with carboxymethylcellulose vehicle and 7 wk of normoxia (CMC-Nx group). The rodents then underwent positron emission tomography with sequential administration of two radiotracers, 2-deoxy-2-[(18)F]fluoroglucose ((18)F-FDG) and 14-(R,S)-[(18)F]fluoro-6-thia-heptadecanoic acid ((18)F-FTHA), analogs of glucose and fatty acid, respectively. Five CMC-Nx and 3 SU-Hx rats completed the entire experimental protocol. In the RV, there was a mild increase in (18)F-FDG uptake (1.35-fold, P = 0.085) and a significant decrease in (18)F-FTHA uptake (-2.1-fold, P < 0.05) in the SU-Hx rats relative to the CMC-Nx rats. In the LV, SU-Hx rats had less uptake of both radiotracers compared with CMC-Nx rats. Less RV fatty acid uptake in SPH was corroborated by decreased fatty acid transporters and enzymes in the RV tissue, and specifically a decrease in lipoprotein lipase. In the RV in rats with SPH, there is a major shift in metabolic substrate preference, largely due to decreased fatty acid uptake.

摘要

在重度肺动脉高压(SPH)中,先前的研究表明右心室(RV)对葡萄糖的摄取增加,但尚不清楚脂肪酸的相对利用率是否发生变化。我们推测,在SPH的右心室中,与左心室(LV)衰竭一样,底物利用率发生改变,葡萄糖摄取增加而脂肪酸摄取减少。通过用VEGF受体抑制剂SU5416和3周低氧(10% FiO2)处理诱导大鼠发生SPH,随后再进行4周常氧处理(SU-Hx组)。对照大鼠用羧甲基纤维素载体处理并进行7周常氧处理(CMC-Nx组)。然后给这些啮齿动物依次注射两种放射性示踪剂进行正电子发射断层扫描,这两种示踪剂分别是葡萄糖类似物2-脱氧-2-[(18)F]氟葡萄糖((18)F-FDG)和脂肪酸类似物14-(R,S)-[(18)F]氟-6-硫代十七烷酸((18)F-FTHA)。5只CMC-Nx大鼠和3只SU-Hx大鼠完成了整个实验方案。在右心室中,与CMC-Nx大鼠相比,SU-Hx大鼠的(18)F-FDG摄取轻度增加(1.35倍,P = 0.085),而(18)F-FTHA摄取显著减少(-2.1倍,P < 0.05)。在左心室中,与CMC-Nx大鼠相比,SU-Hx大鼠对两种放射性示踪剂的摄取均较少。SPH时右心室脂肪酸摄取减少通过右心室组织中脂肪酸转运蛋白和酶的减少得到证实,特别是脂蛋白脂肪酶的减少。在SPH大鼠的右心室中,代谢底物偏好发生了重大转变,这主要是由于脂肪酸摄取减少所致。

相似文献

1
Severe pulmonary hypertension is associated with altered right ventricle metabolic substrate uptake.
Am J Physiol Lung Cell Mol Physiol. 2015 Sep 1;309(5):L435-40. doi: 10.1152/ajplung.00169.2015. Epub 2015 Jun 26.
3
Metabolic remodeling in the right ventricle of rats with severe pulmonary arterial hypertension.
Mol Med Rep. 2021 Apr;23(4). doi: 10.3892/mmr.2021.11866. Epub 2021 Jan 26.
5
Right ventricular sugars and fats in chronic thromboembolic pulmonary hypertension.
Int J Cardiol. 2016 Sep 15;219:143-9. doi: 10.1016/j.ijcard.2016.06.010. Epub 2016 Jun 15.
6
Vascular Adaptation of the Right Ventricle in Experimental Pulmonary Hypertension.
Am J Respir Cell Mol Biol. 2018 Oct;59(4):479-489. doi: 10.1165/rcmb.2018-0095OC.
9
Relation between right ventricular function and increased right ventricular [18F]fluorodeoxyglucose accumulation in patients with heart failure.
Circ Cardiovasc Imaging. 2011 Jan;4(1):59-66. doi: 10.1161/CIRCIMAGING.109.905984. Epub 2010 Nov 5.

引用本文的文献

1
From Blood to Vessel: Lipid Ratios in Pulmonary Hypertension.
Am J Respir Crit Care Med. 2025 Jul;211(7):1124-1126. doi: 10.1164/rccm.202504-0944ED.
2
Novel Therapies for Right Ventricular Failure.
Curr Cardiol Rep. 2025 Jan 18;27(1):26. doi: 10.1007/s11886-024-02157-9.
3
Magnetic nanoradiotracers for targeted neutrophil detection in pulmonary arterial hypertension.
J Nanobiotechnology. 2024 Nov 14;22(1):709. doi: 10.1186/s12951-024-03000-7.
4
Current Overview of the Biology and Pharmacology in Sugen/Hypoxia-Induced Pulmonary Hypertension in Rats.
J Aerosol Med Pulm Drug Deliv. 2024 Oct;37(5):241-283. doi: 10.1089/jamp.2024.0016.
5
Carnitine consumption and effect of oral supplementation in human pulmonary arterial hypertension: A pilot study.
Pulm Circ. 2024 Aug 15;14(3):e12425. doi: 10.1002/pul2.12425. eCollection 2024 Jul.
6
Mechanisms and treatment of pulmonary arterial hypertension.
Nat Rev Cardiol. 2025 Feb;22(2):105-120. doi: 10.1038/s41569-024-01064-4. Epub 2024 Aug 7.
7
Blood Cholesterol and Triglycerides Associate with Right Ventricular Function in Pulmonary Hypertension.
medRxiv. 2024 Jan 22:2024.01.20.24301498. doi: 10.1101/2024.01.20.24301498.
9
Pathophysiology and new advances in pulmonary hypertension.
BMJ Med. 2023 Mar 23;2(1):e000137. doi: 10.1136/bmjmed-2022-000137. eCollection 2023.
10
Exercise metabolomics in pulmonary arterial hypertension: Where pulmonary vascular metabolism meets exercise physiology.
Front Physiol. 2022 Sep 12;13:963881. doi: 10.3389/fphys.2022.963881. eCollection 2022.

本文引用的文献

1
Possible pathogenic mechanism of propofol infusion syndrome involves coenzyme q.
Anesthesiology. 2015 Feb;122(2):343-52. doi: 10.1097/ALN.0000000000000484.
3
Evidence for right ventricular lipotoxicity in heritable pulmonary arterial hypertension.
Am J Respir Crit Care Med. 2014 Feb 1;189(3):325-34. doi: 10.1164/rccm.201306-1086OC.
5
Cardiac glutaminolysis: a maladaptive cancer metabolism pathway in the right ventricle in pulmonary hypertension.
J Mol Med (Berl). 2013 Oct;91(10):1185-97. doi: 10.1007/s00109-013-1064-7. Epub 2013 Jun 21.
7
Metabolic gene remodeling and mitochondrial dysfunction in failing right ventricular hypertrophy secondary to pulmonary arterial hypertension.
Circ Heart Fail. 2013 Jan;6(1):136-44. doi: 10.1161/CIRCHEARTFAILURE.111.966127. Epub 2012 Nov 14.
8
Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploiting Randle's cycle.
J Mol Med (Berl). 2012 Jan;90(1):31-43. doi: 10.1007/s00109-011-0804-9. Epub 2011 Aug 28.
9
Increased right ventricular glucose metabolism in patients with pulmonary arterial hypertension.
Clin Nucl Med. 2011 Sep;36(9):743-8. doi: 10.1097/RLU.0b013e3182177389.
10
Formation of plexiform lesions in experimental severe pulmonary arterial hypertension.
Circulation. 2010 Jun 29;121(25):2747-54. doi: 10.1161/CIRCULATIONAHA.109.927681. Epub 2010 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验