Suppr超能文献

营养干预研究中健康行为改变的跨理论模型分析——一种采用贝叶斯方法的连续时间马尔可夫链模型

Analysis of transtheoretical model of health behavioral changes in a nutrition intervention study--a continuous time Markov chain model with Bayesian approach.

作者信息

Ma Junsheng, Chan Wenyaw, Tsai Chu-Lin, Xiong Momiao, Tilley Barbara C

机构信息

Department of Biostatistics, The University of Texas Health Science Center, 1200 Pressler Street, Houston, 77030, Texas, U.S.A.

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, U.S.A.

出版信息

Stat Med. 2015 Nov 30;34(27):3577-89. doi: 10.1002/sim.6571. Epub 2015 Jun 29.

Abstract

Continuous time Markov chain (CTMC) models are often used to study the progression of chronic diseases in medical research but rarely applied to studies of the process of behavioral change. In studies of interventions to modify behaviors, a widely used psychosocial model is based on the transtheoretical model that often has more than three states (representing stages of change) and conceptually permits all possible instantaneous transitions. Very little attention is given to the study of the relationships between a CTMC model and associated covariates under the framework of transtheoretical model. We developed a Bayesian approach to evaluate the covariate effects on a CTMC model through a log-linear regression link. A simulation study of this approach showed that model parameters were accurately and precisely estimated. We analyzed an existing data set on stages of change in dietary intake from the Next Step Trial using the proposed method and the generalized multinomial logit model. We found that the generalized multinomial logit model was not suitable for these data because it ignores the unbalanced data structure and temporal correlation between successive measurements. Our analysis not only confirms that the nutrition intervention was effective but also provides information on how the intervention affected the transitions among the stages of change. We found that, compared with the control group, subjects in the intervention group, on average, spent substantively less time in the precontemplation stage and were more/less likely to move from an unhealthy/healthy state to a healthy/unhealthy state.

摘要

连续时间马尔可夫链(CTMC)模型常用于医学研究中慢性病进展的研究,但很少应用于行为改变过程的研究。在行为改变干预研究中,一种广泛使用的心理社会模型基于跨理论模型,该模型通常有三个以上的状态(代表改变阶段),并且在概念上允许所有可能的瞬时转变。在跨理论模型框架下,很少有人关注CTMC模型与相关协变量之间关系的研究。我们开发了一种贝叶斯方法,通过对数线性回归链接来评估协变量对CTMC模型的影响。对该方法的模拟研究表明,模型参数能够准确且精确地估计。我们使用所提出的方法和广义多项logit模型分析了来自下一步试验的关于饮食摄入改变阶段的现有数据集。我们发现广义多项logit模型不适用于这些数据,因为它忽略了数据结构的不平衡以及连续测量之间的时间相关性。我们的分析不仅证实了营养干预是有效的,还提供了关于干预如何影响改变阶段之间转变的信息。我们发现,与对照组相比,干预组的受试者平均在未考虑阶段花费的时间显著减少,并且更有可能/不太可能从不健康状态/健康状态转变为健康状态/不健康状态。

相似文献

5
Do the transtheoretical processes of change predict transitions in stages of change for fruit intake?
Health Educ Behav. 2008 Oct;35(5):603-18. doi: 10.1177/1090198106289570. Epub 2006 Aug 2.
6
Markov switching multinomial logit model: An application to accident-injury severities.
Accid Anal Prev. 2009 Jul;41(4):829-38. doi: 10.1016/j.aap.2009.04.006. Epub 2009 May 5.
7
Bayesian analysis for generalized linear models with nonignorably missing covariates.
Biometrics. 2005 Sep;61(3):767-80. doi: 10.1111/j.1541-0420.2005.00338.x.
8
Bayesian adjustment for covariate measurement errors: a flexible parametric approach.
Stat Med. 2009 May 15;28(11):1580-600. doi: 10.1002/sim.3552.
10
Connecting the latent multinomial.
Biometrics. 2015 Dec;71(4):1070-80. doi: 10.1111/biom.12333. Epub 2015 Jun 1.

本文引用的文献

2
Parameterization of treatment effects for meta-analysis in multi-state Markov models.
Stat Med. 2011 Jan 30;30(2):140-51. doi: 10.1002/sim.4059. Epub 2010 Oct 20.
4
Multi-state Markov models in cancer screening evaluation: a brief review and case study.
Stat Methods Med Res. 2010 Oct;19(5):463-86. doi: 10.1177/0962280209359848. Epub 2010 Mar 15.
5
Computation of the asymptotic null distribution of goodness-of-fit tests for multi-state models.
Lifetime Data Anal. 2009 Dec;15(4):519-33. doi: 10.1007/s10985-009-9133-5. Epub 2009 Nov 1.
6
Modeling nonhomogeneous Markov processes via time transformation.
Biometrics. 2008 Sep;64(3):843-850. doi: 10.1111/j.1541-0420.2007.00932.x. Epub 2007 Nov 19.
7
A general goodness-of-fit test for Markov and hidden Markov models.
Stat Med. 2008 May 30;27(12):2177-95. doi: 10.1002/sim.3033.
9
Continuous time Markov models for binary longitudinal data.
Biom J. 2006 Jun;48(3):411-9. doi: 10.1002/bimj.200510224.
10
Analysis of longitudinal multinomial outcome data.
Biom J. 2006 Apr;48(2):319-26. doi: 10.1002/bimj.200510187.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验