†Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093-0358, United States.
‡Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.
Inorg Chem. 2015 Jul 20;54(14):7110-21. doi: 10.1021/acs.inorgchem.5b01252. Epub 2015 Jul 1.
The redox-noninnocence of metal-coordinated C-organo nitrosoarenes has been established on the basis of solid-state characterization techniques, but the solution-phase properties of this class of metal-coordinated radicals have been relatively underexplored. In this report, the solution-phase properties and dynamics of the bis-nitrosobenzene diradical complex trans-Pd(κ(1)-N-PhNO)2(CNAr(Dipp2))2 are presented. This complex, which is best described as containing singly reduced phenylnitroxide radical ligands, is shown to undergo facile nitrosobenzene dissociation in solution to form the metalloxaziridine Pd(η(2)-N,O-PhNO)(CNAr(Dipp2))2 and thus is not a persistent species in solution. An equilibrium between trans-Pd(κ(1)-N-PhNO)2(CNAr(Dipp2))2, Pd(η(2)-N,O-PhNO)(CNAr(Dipp2))2, and free nitrosobenzene is established in solution, with the metalloxaziridine being predominantly favored. Efforts to perturb this equilibrium by the addition of excess nitrosobenzene reveal that the formation of trans-Pd(κ(1)-N-PhNO)2(CNAr(Dipp2))2 is in competition with insertion-type chemistry of Pd(η(2)-N,O-PhNO)(CNAr(Dipp2))2 and is therefore not a viable strategy for the production of a kinetically persistent bis-nitroxide radical complex. Electronic modification of the nitrosoarene framework was explored as a means to generate a persistent trans-Pd(κ(1)-N-ArNO)2(CNAr(Dipp2))2 complex. While most substitution schemes failed to significantly perturb the kinetic lability of the nitrosoarene ligands in the corresponding trans-Pd(κ(1)-N-ArNO)2(CNAr(Dipp2))2 complexes, utilization of para-formyl or para-cyano nitrosobenzene produced bis-nitroxide diradical complexes that display kinetic persistence in solution. The origin of this persistence is rationalized by the ability of para-formyl- and para-cyano-aryl groups to both attenuate the trans effect of the corresponding nitrosoarene and, more importantly, delocalize spin density away from the aryl-nitroxide NO unit. The results presented here highlight the inherent instability of metal-coordinated nitroxide radicals and suggest a general synthetic strategy for kinetically stabilizing these species in solution.
金属配位 C-有机亚硝基芳烃的氧化还原非中性已经通过固态特征技术得到证实,但这一类金属配位自由基的溶液相性质仍相对较少被探索。在本报告中,呈现了双亚硝基苯双自由基配合物反式-Pd(κ(1)-N-PhNO)2(CNAr(Dipp2))2 的溶液相性质和动力学。该配合物最好被描述为含有单还原的苯基氮氧自由基配体,在溶液中易发生亚硝基苯解离,形成金属噁唑啉 Pd(η(2)-N,O-PhNO)(CNAr(Dipp2))2,因此在溶液中不是持久物种。反式-Pd(κ(1)-N-PhNO)2(CNAr(Dipp2))2、Pd(η(2)-N,O-PhNO)(CNAr(Dipp2))2 和游离亚硝基苯之间在溶液中建立了平衡,其中金属噁唑啉占主导地位。通过添加过量亚硝基苯来干扰该平衡的努力表明,反式-Pd(κ(1)-N-PhNO)2(CNAr(Dipp2))2 的形成与 Pd(η(2)-N,O-PhNO)(CNAr(Dipp2))2 的插入型化学竞争,因此不是产生动力学持久的双氮氧自由基配合物的可行策略。探索了亚硝基芳烃骨架的电子修饰作为产生持久的反式-Pd(κ(1)-N-ArNO)2(CNAr(Dipp2))2 配合物的手段。虽然大多数取代方案都未能显著改变相应的反式-Pd(κ(1)-N-ArNO)2(CNAr(Dipp2))2 配合物中亚硝基芳烃配体的动力学不稳定性,但使用对甲酰基或对氰基亚硝基苯产生了在溶液中显示动力学持久性的双氮氧自由基配合物。这种持久性的起源可以通过对甲酰基和对氰基芳基基团既能减弱相应亚硝基芳烃的反式效应,更重要的是,将自旋密度从芳基-氮氧自由基 NO 单元上离域化来合理化。这里呈现的结果突出了金属配位氮氧自由基的固有不稳定性,并提出了一种在溶液中动力学稳定这些物种的一般合成策略。