Suppr超能文献

使用临床经皮心脏介入注册数据时,添加实验室检查值能否改善风险调整死亡率模型?

Can Adding Laboratory Values Improve Risk-Adjustment Mortality Models Using Clinical Percutaneous Cardiac Intervention Registry Data?

作者信息

Qian Feng, Hannan Edward L, Pine Michael, Fry Donald E, Whitman Kay, Dennison Barbara A

机构信息

Department of Health Policy, Management, and Behavior, School of Public Health, University at Albany - State University of New York, One University Place, Room 169, Rensselaer, NY 12144 USA.

出版信息

J Invasive Cardiol. 2015 Jul;27(7):E117-24.

Abstract

BACKGROUND

Registry data for percutaneous coronary intervention (PCI) are being used in New York and Massachusetts and by the American College of Cardiology to risk-adjust provider mortality rates. These registries contain very few numerical laboratory data for risk adjustment.

METHODS

For 20 hospitals, New York's PCI registry data from 2008-2010 were used to develop statistic models for predicting in-hospital/30-day mortality with and without appended laboratory data. Discrimination, calibration, correlation in hospital's risk-adjusted mortality rates, and differences in hospital quality outlier status were compared for the two models.

RESULTS

The discrimination of the risk-adjustment models was very similar (C-statistic = 0.898 from the registry model vs C-statistic = 0.908 from the registry/laboratory model; P=.40). Most of the non-laboratory variables in the two models were identical, except that the registry model contained malignant ventricular arrhythmia and the registry/laboratory model contained previous coronary artery bypass surgery. The registry/laboratory model also contained albumin ≤3.3 g/dL, creatine kinase ≥600 U/L, glucose ≥270 mg/dL, platelet count >350 k/μL, potassium >51 mmol/L, and partial thromboplastin time >40 seconds. The addition of laboratory data did not affect outlier status for better-performing hospitals, but there were differences in identifying the hospitals with significantly higher risk-adjusted mortality rates.

CONCLUSIONS

Adding laboratory data did not significantly improve the risk-adjustment mortality models' performance and did not dramatically change the quality assessment of hospitals. The pros and cons of adding key laboratory variables to PCI registries require further evaluation.

摘要

背景

纽约州、马萨诸塞州以及美国心脏病学会正在使用经皮冠状动脉介入治疗(PCI)的登记数据,以对医疗服务提供者的死亡率进行风险调整。这些登记数据中用于风险调整的数值型实验室数据非常少。

方法

利用纽约州2008 - 2010年20家医院的PCI登记数据,建立了有无附加实验室数据情况下预测住院/30天死亡率的统计模型。比较了两种模型在区分度、校准度、医院风险调整死亡率的相关性以及医院质量异常状态方面的差异。

结果

风险调整模型的区分度非常相似(登记模型的C统计量 = 0.898,登记/实验室模型的C统计量 = 0.908;P = 0.40)。两种模型中的大多数非实验室变量相同,只是登记模型包含恶性室性心律失常,而登记/实验室模型包含既往冠状动脉搭桥手术史。登记/实验室模型还包含白蛋白≤3.3 g/dL、肌酸激酶≥600 U/L、血糖≥270 mg/dL、血小板计数>350 k/μL、钾>51 mmol/L以及部分凝血活酶时间>40秒。添加实验室数据对表现较好的医院的异常状态没有影响,但在识别风险调整死亡率显著较高的医院方面存在差异。

结论

添加实验室数据并未显著改善风险调整死亡率模型的性能,也未显著改变医院的质量评估。将关键实验室变量添加到PCI登记数据中的利弊需要进一步评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验