Suppr超能文献

脑扩散成像数据的分解揭示了具有不同白质各向异性模式的潜在精神分裂症。

Decomposition of brain diffusion imaging data uncovers latent schizophrenias with distinct patterns of white matter anisotropy.

作者信息

Arnedo Javier, Mamah Daniel, Baranger David A, Harms Michael P, Barch Deanna M, Svrakic Dragan M, de Erausquin Gabriel A, Cloninger C Robert, Zwir Igor

机构信息

Department of Computer Science and Artificial Intelligence, University of Granada, Spain.

Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.

出版信息

Neuroimage. 2015 Oct 15;120:43-54. doi: 10.1016/j.neuroimage.2015.06.083. Epub 2015 Jul 4.

Abstract

Fractional anisotropy (FA) analysis of diffusion tensor-images (DTI) has yielded inconsistent abnormalities in schizophrenia (SZ). Inconsistencies may arise from averaging heterogeneous groups of patients. Here we investigate whether SZ is a heterogeneous group of disorders distinguished by distinct patterns of FA reductions. We developed a Generalized Factorization Method (GFM) to identify biclusters (i.e., subsets of subjects associated with a subset of particular characteristics, such as low FA in specific regions). GFM appropriately assembles a collection of unsupervised techniques with Non-negative Matrix Factorization to generate biclusters, rather than averaging across all subjects and all their characteristics. DTI tract-based spatial statistics images, which output is the locally maximal FA projected onto the group white matter skeleton, were analyzed in 47 SZ and 36 healthy subjects, identifying 8 biclusters. The mean FA of the voxels of each bicluster was significantly different from those of other SZ subjects or 36 healthy controls. The eight biclusters were organized into four more general patterns of low FA in specific regions: 1) genu of corpus callosum (GCC), 2) fornix (FX)+external capsule (EC), 3) splenium of CC (SCC)+retrolenticular limb (RLIC)+posterior limb (PLIC) of the internal capsule, and 4) anterior limb of the internal capsule. These patterns were significantly associated with particular clinical features: Pattern 1 (GCC) with bizarre behavior, pattern 2 (FX+EC) with prominent delusions, and pattern 3 (SCC+RLIC+PLIC) with negative symptoms including disorganized speech. The uncovered patterns suggest that SZ is a heterogeneous group of disorders that can be distinguished by different patterns of FA reductions associated with distinct clinical features.

摘要

扩散张量成像(DTI)的分数各向异性(FA)分析在精神分裂症(SZ)中得出了不一致的异常结果。不一致可能源于对异质性患者群体进行平均。在此,我们研究SZ是否是一组由不同FA降低模式区分的异质性疾病。我们开发了一种广义分解方法(GFM)来识别双聚类(即与特定特征子集相关的受试者子集,例如特定区域的低FA)。GFM通过非负矩阵分解适当地组合了一系列无监督技术以生成双聚类,而不是对所有受试者及其所有特征进行平均。对47名SZ患者和36名健康受试者的基于DTI纤维束的空间统计图像进行了分析,这些图像的输出是投影到群体白质骨架上的局部最大FA,共识别出8个双聚类。每个双聚类体素的平均FA与其他SZ受试者或36名健康对照者的平均FA有显著差异。这8个双聚类被组织成特定区域低FA的四种更一般模式:1)胼胝体膝部(GCC),2)穹窿(FX)+外囊(EC),3)胼胝体压部(SCC)+内囊后肢(RLIC)+内囊后肢(PLIC),4)内囊前肢。这些模式与特定临床特征显著相关:模式1(GCC)与怪异行为相关,模式2(FX+EC)与突出的妄想相关,模式3(SCC+RLIC+PLIC)与包括言语紊乱在内的阴性症状相关。所发现的模式表明,SZ是一组异质性疾病,可通过与不同临床特征相关的不同FA降低模式来区分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验