Suppr超能文献

小鼠出生后卵巢发育和超排卵过程中miRNA的鉴定。

Identification of miRNAs during mouse postnatal ovarian development and superovulation.

作者信息

Khan Hamid Ali, Zhao Yi, Wang Li, Li Qian, Du Yu-Ai, Dan Yi, Huo Li-Jun

机构信息

Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.

出版信息

J Ovarian Res. 2015 Jul 8;8:44. doi: 10.1186/s13048-015-0170-2.

Abstract

BACKGROUND

MicroRNAs are small noncoding RNAs that play critical roles in regulation of gene expression in wide array of tissues including the ovary through sequence complementarity at post-transcriptional level. Tight regulation of multitude of genes involved in ovarian development and folliculogenesis could be regulated at transcription level by these miRNAs. Therefore, tissue specific miRNAs identification is considered a key step towards understanding the role of miRNAs in biological processes.

METHODS

To investigate the role of microRNAs during ovarian development and folliculogenesis we sequenced eight different libraries using Illumina deep sequencing technology. Different developmental stages were selected to explore miRNAs expression pattern at different stages of gonadal maturation with/without treatment of PMSG/hCG for superovulation.

RESULTS

From massive sequencing reads, clean reads of 16-26 bp were selected for further analysis of differential expression analysis and novel microRNA annotation. Expression analysis of all miRNAs at different developmental stages showed that some miRNAs were present ubiquitously while others were differentially expressed at different stages. Among differentially expressed miRNAs we reported 61 miRNAs with a fold change of more than 2 at different developmental stages among all libraries. Among the up-regulated miRNAs, mmu-mir-1298 had the highest fold change with 4.025 while mmu-mir-150 was down-regulated more than 3 fold. Furthermore, we found 2659 target genes for 20 differentially expressed microRNAs using seven different target predictions programs (DIANA-mT, miRanda, miRDB, miRWalk, RNAhybrid, PICTAR5, TargetScan). Analysis of the predicted targets showed certain ovary specific genes targeted by single or multiple microRNAs. Furthermore, pathway annotation and Gene ontology showed involvement of these microRNAs in basic cellular process.

CONCLUSIONS

These results suggest the presence of different miRNAs at different stages of ovarian development and superovulation. Potential role of these microRNAs was elucidated using bioinformatics tools in regulation of different pathways, biological functions and cellular components underlying ovarian development and superovulation. These results provide a framework for extended analysis of miRNAs and their roles during ovarian development and superovulation. Furthermore, this study provides a base for characterization of individual miRNAs to discover their role in ovarian development and female fertility.

摘要

背景

微小RNA是一类小的非编码RNA,通过在转录后水平上的序列互补性,在包括卵巢在内的多种组织的基因表达调控中发挥关键作用。这些微小RNA可以在转录水平上对参与卵巢发育和卵泡发生的众多基因进行严格调控。因此,组织特异性微小RNA的鉴定被认为是理解微小RNA在生物学过程中作用的关键步骤。

方法

为了研究微小RNA在卵巢发育和卵泡发生过程中的作用,我们使用Illumina深度测序技术对八个不同的文库进行了测序。选择不同的发育阶段,以探索在有/无孕马血清促性腺激素/人绒毛膜促性腺激素超排卵处理的性腺成熟不同阶段的微小RNA表达模式。

结果

从大量测序读数中,选择16 - 26 bp的纯净读数用于差异表达分析和新型微小RNA注释的进一步分析。对所有微小RNA在不同发育阶段的表达分析表明,一些微小RNA普遍存在,而其他微小RNA在不同阶段差异表达。在差异表达的微小RNA中,我们报道了在所有文库的不同发育阶段中,有61个微小RNA的变化倍数超过2。在上调的微小RNA中,mmu - mir - 1298的变化倍数最高,为4.025,而mmu - mir - 150下调超过3倍。此外,我们使用七种不同的靶标预测程序(DIANA - mT、miRanda、miRDB、miRWalk、RNAhybrid、PICTAR5、TargetScan)为20个差异表达的微小RNA找到了2659个靶基因。对预测靶标的分析表明,某些卵巢特异性基因被单个或多个微小RNA靶向。此外,通路注释和基因本体分析表明这些微小RNA参与了基本的细胞过程。

结论

这些结果表明在卵巢发育和超排卵的不同阶段存在不同的微小RNA。利用生物信息学工具阐明了这些微小RNA在调控卵巢发育和超排卵的不同通路、生物学功能和细胞成分中的潜在作用。这些结果为进一步分析微小RNA及其在卵巢发育和超排卵过程中的作用提供了框架。此外,本研究为表征单个微小RNA以发现它们在卵巢发育和女性生育中的作用奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad9/4499447/cbd854189aa2/13048_2015_170_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验