Suppr超能文献

通过金属氧化物的电驱动纳米级成核增强基于金属纳米线的透明电极的性能。

Performance enhancement of metal nanowire-based transparent electrodes by electrically driven nanoscale nucleation of metal oxides.

作者信息

Shiau Yu-Jeng, Chiang Kai-Ming, Lin Hao-Wu

机构信息

Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan.

出版信息

Nanoscale. 2015 Aug 7;7(29):12698-705. doi: 10.1039/c5nr02780b. Epub 2015 Jul 8.

Abstract

Solution-processed silver nanowire (AgNW) electrodes have been considered to be promising materials for next-generation flexible transparent conductive electrodes. Despite the fact that a single AgNW has extremely high conductivities, the high junction resistance between nanowires limits the performance of the AgNW matrix. Therefore, post-treatments are usually required to approach better NW-NW contact. Herein, we report a novel linking method that uses joule heating to accumulate sol-gel ZnO near nanowire junctions. The nanoscale ZnO nucleation successfully restrained the thermal instability of the AgNW under current injection and acted as an efficient tightening medium to realize good NW-NW contacts. A low process temperature (<50 °C), and thus low energy consumption, are required for ZnO nucleation. This made the use of substrates with very low operating temperatures, such as PET and PEN, feasible. The optimized AgNW transparent conductive electrodes (TCE) fabricated using this promising linking method exhibited a low sheet resistance (13 Ω sq(-1)), a high transmission (92% at 550 nm), a high figure of merit (FOM; up to σDC/σOp = 340) and can be applied to wide range of next-generation flexible optoelectronic devices.

摘要

溶液处理的银纳米线(AgNW)电极被认为是下一代柔性透明导电电极的有前途的材料。尽管单根AgNW具有极高的电导率,但纳米线之间的高结电阻限制了AgNW基体的性能。因此,通常需要进行后处理以实现更好的纳米线-纳米线接触。在此,我们报道了一种新颖的连接方法,该方法利用焦耳热在纳米线结附近积累溶胶-凝胶ZnO。纳米级ZnO成核成功抑制了电流注入下AgNW的热不稳定性,并作为一种有效的紧固介质实现了良好的纳米线-纳米线接触。ZnO成核需要较低的工艺温度(<50°C),因此能耗较低。这使得使用具有非常低工作温度的基板(如PET和PEN)成为可行。使用这种有前途的连接方法制造的优化AgNW透明导电电极(TCE)表现出低方块电阻(13Ω sq(-1))、高透射率(550nm处为92%)、高优值(FOM;高达σDC/σOp = 340),并且可应用于广泛的下一代柔性光电器件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验