Ghorpade Uma V, Suryawanshi Mahesh P, Shin Seung Wook, Hong Chang Woo, Kim Inyoung, Moon Jong H, Yun Jae Ho, Kim Jin Hyeok, Kolekar Sanjay S
Department of Materials Science and Engineering and Optoelectronics Convergence Research Centre, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju 500-757, South Korea.
Phys Chem Chem Phys. 2015 Aug 14;17(30):19777-88. doi: 10.1039/c5cp02007g. Epub 2015 Jul 8.
A quaternary indium- and gallium-free kesterite (KS)-based compound, copper zinc tin sulfide (Cu2ZnSnS4, CZTS), has received significant attention for its potential applications in low cost and sustainable solar cells. It is well known that the reaction time, reactivity of the precursors, and types of capping ligands used during the synthesis of colloidal nanocrystals (NCs) strongly influence the crystallographic phase of the NCs. In this research, a non-toxic and green synthetic strategy for both the synthesis of CZTS NCs and the fabrication of a highly efficient CZTS absorber layers using an ink formulation without a toxic solvent, which meets the comprehensive framework for green chemistry that covers major aspects of the environmental strain, is demonstrated. In particular, pure metastable wurtzite (WZ) CZTS NCs are synthesized using the environmentally harmless, polyol mediated hot-injection (HI) technique at a low reaction temperature. The influence of the reaction time on the properties of the CZTS NCs is investigated in detail. Based on detailed reaction time dependent phase evolution, a possible growth and formation mechanism is proposed. Furthermore, a scalable, low cost, binder free ink formulation process without ligand exchange is developed using ethanol as the dispersal solvent. The as-prepared WZ-derived CZTS NC thin films are observed to undergo a phase transformation to KS during annealing in a sulfur vapor atmosphere via rapid thermal annealing above 500 °C, and surprisingly, this process results in fully sintered, compact and uniform CZTS thin films with large sized grains. The best solar cell device fabricated using a CZTS absorber that was sulfurized at an optimized temperature exhibits a power conversion efficiency of 2.44%, which is the highest efficiency obtained using the polyol-based HI route.
一种无铟和镓的四元硫锡铜矿(KS)基化合物,即铜锌锡硫化物(Cu2ZnSnS4,CZTS),因其在低成本和可持续太阳能电池中的潜在应用而备受关注。众所周知,在胶体纳米晶体(NCs)合成过程中,反应时间、前驱体的反应活性以及所使用的封端配体类型会强烈影响NCs的晶体相。在本研究中,展示了一种无毒且绿色的合成策略,用于合成CZTS NCs以及使用不含有毒溶剂的油墨配方制备高效的CZTS吸收层,该策略符合涵盖环境压力主要方面的绿色化学综合框架。特别地,使用环境无害的多元醇介导热注入(HI)技术在低温下合成了纯亚稳纤锌矿(WZ)相的CZTS NCs。详细研究了反应时间对CZTS NCs性能的影响。基于详细的随反应时间变化的相演变,提出了一种可能的生长和形成机制。此外,开发了一种以乙醇作为分散溶剂、无需配体交换的可扩展、低成本、无粘合剂的油墨配方工艺。观察到所制备的源自WZ相的CZTS NC薄膜在500℃以上通过快速热退火在硫蒸气气氛中退火时会发生相转变为KS相,令人惊讶的是,这一过程导致形成了具有大尺寸晶粒的完全烧结、致密且均匀的CZTS薄膜。使用在优化温度下硫化的CZTS吸收体制备的最佳太阳能电池器件表现出2.44%的功率转换效率,这是使用基于多元醇的HI路线获得的最高效率。