King T Luise, Ruyle Brian C, Kline David D, Heesch Cheryl M, Hasser Eileen M
Department of Biomedical Sciences.
Department of Biomedical Sciences, Dalton Cardiovascular Research Center, and.
Am J Physiol Regul Integr Comp Physiol. 2015 Oct;309(7):R721-31. doi: 10.1152/ajpregu.00540.2014. Epub 2015 Jul 8.
Brainstem catecholamine neurons modulate sensory information and participate in control of cardiorespiratory function. These neurons have multiple projections, including to the paraventricular nucleus (PVN), which contributes to cardiorespiratory and neuroendocrine responses to hypoxia. We have shown that PVN-projecting catecholaminergic neurons are activated by hypoxia, but the function of these neurons is not known. To test the hypothesis that PVN-projecting catecholamine neurons participate in responses to respiratory challenges, we injected IgG saporin (control; n = 6) or anti-dopamine β-hydroxylase saporin (DSAP; n = 6) into the PVN to retrogradely lesion catecholamine neurons projecting to the PVN. After 2 wk, respiratory measurements (plethysmography) were made in awake rats during normoxia, increasing intensities of hypoxia (12, 10, and 8% O2) and hypercapnia (5% CO2-95% O2). DSAP decreased the number of tyrosine hydroxylase-immunoreactive terminals in PVN and cells counted in ventrolateral medulla (VLM; -37%) and nucleus tractus solitarii (nTS; -36%). DSAP produced a small but significant decrease in respiratory rate at baseline (during normoxia) and at all intensities of hypoxia. Tidal volume and minute ventilation (VE) index also were impaired at higher hypoxic intensities (10-8% O2; e.g., VE at 8% O2: IgG = 181 ± 22, DSAP = 91 ± 4 arbitrary units). Depressed ventilation in DSAP rats was associated with significantly lower arterial O2 saturation at all hypoxic intensities. PVN DSAP also reduced ventilatory responses to 5% CO2 (VE: IgG = 176 ± 21 and DSAP = 84 ± 5 arbitrary units). Data indicate that catecholamine neurons projecting to the PVN are important for peripheral and central chemoreflex respiratory responses and for maintenance of arterial oxygen levels during hypoxic stimuli.
脑干儿茶酚胺能神经元调节感觉信息并参与心肺功能的控制。这些神经元有多个投射,包括投射到室旁核(PVN),该核参与对缺氧的心肺和神经内分泌反应。我们已经表明,投射到PVN的儿茶酚胺能神经元被缺氧激活,但其功能尚不清楚。为了验证投射到PVN的儿茶酚胺能神经元参与对呼吸挑战反应的假说,我们将IgG皂草素(对照;n = 6)或抗多巴胺β-羟化酶皂草素(DSAP;n = 6)注入PVN,以逆行损伤投射到PVN的儿茶酚胺能神经元。2周后,在常氧、缺氧强度增加(12%、10%和8% O2)和高碳酸血症(5% CO2 - 95% O2)期间,对清醒大鼠进行呼吸测量(体积描记法)。DSAP减少了PVN中酪氨酸羟化酶免疫反应性终末的数量以及腹外侧延髓(VLM;-37%)和孤束核(nTS;-36%)中计数的细胞数量。DSAP在基线(常氧期间)和所有缺氧强度下使呼吸频率产生了小但显著的降低。在较高缺氧强度(10% - 8% O2)下,潮气量和分钟通气量(VE)指数也受损(例如,8% O2时的VE:IgG = 181 ± 22,DSAP = 91 ± 4任意单位)。DSAP大鼠通气抑制与所有缺氧强度下显著更低的动脉血氧饱和度相关。PVN注射DSAP还降低了对5% CO2的通气反应(VE:IgG = 176 ± 21,DSAP = 84 ± 5任意单位)。数据表明,投射到PVN的儿茶酚胺能神经元对于外周和中枢化学反射呼吸反应以及在缺氧刺激期间维持动脉血氧水平很重要。
Am J Physiol Regul Integr Comp Physiol. 2015-10
Am J Physiol Regul Integr Comp Physiol. 2012-3-7
Am J Physiol Regul Integr Comp Physiol. 2013-9-18
Am J Physiol Regul Integr Comp Physiol. 2018-9-19
Am J Physiol Regul Integr Comp Physiol. 2006-10
Am J Physiol Regul Integr Comp Physiol. 2021-6-1
Front Physiol. 2021-4-23
Int J Mol Sci. 2020-5-15
Am J Physiol Regul Integr Comp Physiol. 2019-12-1
Am J Respir Crit Care Med. 2014-12-1
J Comp Neurol. 2014-12-1
Am J Physiol Endocrinol Metab. 2013-9-24
Am J Physiol Regul Integr Comp Physiol. 2013-9-18
Am J Physiol Regul Integr Comp Physiol. 2013-9-18
Am J Physiol Regul Integr Comp Physiol. 2013-5-22
Am J Physiol Regul Integr Comp Physiol. 2012-3-7