†Kanagawa Academy of Science and Technology, 4259 Nagatsuta, Midori-Ku, Yokohama, Japan 226-8503.
‡Chemical Resources Laboratory, Tokyo Institute of Technology, R1-17, 4259 Nagatsuta, Midori-Ku, Yokohama, Japan 226-8503.
ACS Appl Mater Interfaces. 2015 Aug 5;7(30):16311-21. doi: 10.1021/acsami.5b03137. Epub 2015 Jul 23.
Design of Pt alloy catalysts with enhanced activity and durability is a key challenge for polymer electrolyte membrane fuel cells. In the present work, we compare the durability of the ordered intermetallic face-centered tetragonal (fct) PtFeCu catalyst for the oxygen reduction reaction (ORR) relative to its counterpart bimetallic catalysts, i.e., the ordered intermetallic fct-PtFe catalyst and the commercial catalyst from Tanaka Kikinzoku Kogyo, TKK-PtC. Although both fct catalysts initially exhibited an ordered structure and mass activity approximately 2.5 times higher than that of TKK-Pt/C, the presence of Cu at the ordered intermetallic fct-PtFeCu catalyst led to a significant enhancement in durability compared to that of the ordered intermetallic fct-PtFe catalyst. The ordered intermetallic fct-PtFeCu catalyst retained more than 70% of its mass activity and electrochemically active surface area (ECSA) over 10 000 durability cycles carried out at 60 °C. In contrast, the ordered intermetallic fct-PtFe catalyst maintained only about 40% of its activity. The temperature of the durability experiment is also shown to be important: the catalyst was more severely degraded at 60 °C than at room temperature. To obtain insight into the observed enhancement in durability of fct-PtFeCu catalyst, a postmortem analysis of the ordered intermetallic fct-PtFeCu catalyst was carried out using scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDX) line scan. The STEM-EDX line scans of the ordered intermetallic fct-PtFeCu catalyst over 10 000 durability cycles showed a smaller degree of Fe and Cu dissolution from the catalyst. Conversely, large dissolution of Fe was identified in the ordered intermetallic fct-PtFe catalyst, indicating a lesser retention of Fe that causes the destruction of ordered structure and gives rise to poor durability. The enhancement in the durability of the ordered intermetallic fct-PtFeCu catalyst is ascribed to the synergistic effects of Cu presence and the ordered structure of catalyst.
设计具有增强的活性和耐久性的 Pt 合金催化剂是聚合物电解质膜燃料电池的关键挑战。在本工作中,我们比较了有序面心四方(fct)PtFeCu 催化剂相对于其双金属催化剂(即有序 fct-PtFe 催化剂和 Tanaka Kikinzoku Kogyo 的商业催化剂 TKK-PtC)的氧还原反应(ORR)耐久性。虽然两种 fct 催化剂最初都表现出有序结构和质量活性大约是 TKK-Pt/C 的 2.5 倍,但有序 fct-PtFeCu 催化剂中 Cu 的存在导致其耐久性相对于有序 fct-PtFe 催化剂有显著提高。有序 fct-PtFeCu 催化剂在 60°C 下进行了 10000 次耐久性循环后,仍保持了超过 70%的质量活性和电化学活性表面积(ECSA)。相比之下,有序 fct-PtFe 催化剂仅保持了约 40%的活性。耐久性实验的温度也被证明是重要的:催化剂在 60°C 下比在室温下更严重降解。为了深入了解观察到的 fct-PtFeCu 催化剂耐久性增强,对有序 fct-PtFeCu 催化剂进行了后处理分析,使用扫描透射电子显微镜-能量色散 X 射线光谱(STEM-EDX)线扫描。有序 fct-PtFeCu 催化剂在 10000 次耐久性循环后的 STEM-EDX 线扫描显示,催化剂中 Fe 和 Cu 的溶解程度较小。相反,在有序 fct-PtFe 催化剂中发现了大量的 Fe 溶解,表明 Fe 的保留较少,这导致有序结构的破坏并导致较差的耐久性。有序 fct-PtFeCu 催化剂耐久性的提高归因于 Cu 存在和催化剂有序结构的协同效应。