Matys Anna, Podlewska Sabina, Witek Karolina, Witek Jagna, Bojarski Andrzej J, Schabikowski Jakub, Otrębska-Machaj Ewa, Latacz Gniewomir, Szymańska Ewa, Kieć-Kononowicz Katarzyna, Molnar Joseph, Amaral Leonard, Handzlik Jadwiga
Department of Technology and Biotechnology of Drugs Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland.
Department of Medicinal Chemistry Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland; Faculty of Chemistry Jagiellonian University, Ingardena 3, PL 30-060 Kraków, Poland.
Eur J Med Chem. 2015 Aug 28;101:313-25. doi: 10.1016/j.ejmech.2015.06.013. Epub 2015 Jun 24.
A series of amine derivatives of 5-aromatic imidazolidine-4-ones (7-19), representing three subgroups: piperazine derivatives of 5-arylideneimidazolones (7-13), piperazine derivatives of 5-arylideneimidazolidine-2,4-dione (14-16) and primary amines of 5-naphthyl-5-methylimidazolidine-2,4-diones (17-19), was evaluated for their ability to improve antibiotics effectiveness in two strains of Gram-positive Staphylococcus aureus: ATCC 25923 (a reference strain) and MRSA (methicillin resistant S. aureus) HEMSA 5 (a resistant clinical isolate). The latter compounds (17-19) were obtained by 4-step synthesis using Bucherer-Bergs condensation, two-phase bromoalkylation and Gabriel reactions. The naphthalen derivative: (Z)-5-(naphthalen-2-ylmethylene)-2-(piperazin-1-yl)-3H-imidazol-4(5H)-one (10) was the most potent in combination with β-lactam antibiotics and ciprofloxacin against the resistant strain. The high potency to increase efficacy of oxacillin was noted for (Z)-5-(anthracen-10-ylmethylene)-2-(piperazin-1-yl)-3H-imidazol-4(5H)one (12) too. In order to explain the mechanism of action of the compounds 10 and 12, docking studies with the use of crystal structures of a penicillin binding protein (PBP2a) and MecR1 were carried out. Their outcomes suggested that the most probable mechanism of action of the active compounds is the interaction with MecR1. Molecular dynamic experiments performed for the active compounds and compound 13 (structurally similar to 12) supported this hypothesis and provided possible explanation of activity dependencies of the tested compounds in terms of the restoration of antibiotic efficacy in S. aureus MRSA HEMSA 5.
一系列5-芳基咪唑烷-4-酮的胺衍生物(7-19),分为三个亚组:5-亚芳基咪唑啉酮的哌嗪衍生物(7-13)、5-亚芳基咪唑烷-2,4-二酮的哌嗪衍生物(14-16)以及5-萘基-5-甲基咪唑烷-2,4-二酮的伯胺(17-19),评估了它们增强两种革兰氏阳性金黄色葡萄球菌菌株抗生素效力的能力:ATCC 25923(参考菌株)和MRSA(耐甲氧西林金黄色葡萄球菌)HEMSA 5(耐药临床分离株)。后一类化合物(17-19)通过使用布赫尔-贝格斯缩合、两相溴烷基化和盖布瑞尔反应的4步合成法获得。萘衍生物:(Z)-5-(萘-2-基亚甲基)-2-(哌嗪-1-基)-3H-咪唑-4(5H)-酮(10)与β-内酰胺抗生素和环丙沙星联合使用时,对耐药菌株的效力最强。(Z)-5-(蒽-10-基亚甲基)-2-(哌嗪-1-基)-3H-咪唑-4(5H)酮(12)对增强苯唑西林的疗效也有高效力。为了解释化合物10和12的作用机制,利用青霉素结合蛋白(PBP2a)和MecR1的晶体结构进行了对接研究。其结果表明,活性化合物最可能的作用机制是与MecR1相互作用。对活性化合物和化合物13(结构与12相似)进行的分子动力学实验支持了这一假设,并从恢复金黄色葡萄球菌MRSA HEMSA 5中抗生素效力的角度,对测试化合物的活性依赖性提供了可能的解释。