Deconstruction Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA ; Biological and Materials Science Center, Sandia National Laboratories, Livermore, CA USA.
Deconstruction Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA ; Advanced Light Source, Lawrence Berkeley National Lab, Berkeley, CA USA.
Biotechnol Biofuels. 2015 Jul 4;8:95. doi: 10.1186/s13068-015-0275-2. eCollection 2015.
Lignocellulosic biomass has the potential to be a major source of renewable sugar for biofuel production. Before enzymatic hydrolysis, biomass must first undergo a pretreatment step in order to be more susceptible to saccharification and generate high yields of fermentable sugars. Lignin, a complex, interlinked, phenolic polymer, associates with secondary cell wall polysaccharides, rendering them less accessible to enzymatic hydrolysis. Herein, we describe the analysis of engineered Arabidopsis lines where lignin biosynthesis was repressed in fiber tissues but retained in the vessels, and polysaccharide deposition was enhanced in fiber cells with little to no apparent negative impact on growth phenotype.
Engineered Arabidopsis plants were treated with the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate 1-ethyl-3-methylimidazolium acetate ([C2C1im][OAc]) at 10 % wt biomass loading at either 70 °C for 5 h or 140 °C for 3 h. After pretreatment at 140 °C and subsequent saccharification, the relative peak sugar recovery of ~26.7 g sugar per 100 g biomass was not statistically different for the wild type than the peak recovery of ~25.8 g sugar per 100 g biomass for the engineered plants (84 versus 86 % glucose from the starting biomass). Reducing the pretreatment temperature to 70 °C for 5 h resulted in a significant reduction in the peak sugar recovery obtained from the wild type to 16.2 g sugar per 100 g biomass, whereas the engineered lines with reduced lignin content exhibit a higher peak sugar recovery of 27.3 g sugar per 100 g biomass and 79 % glucose recoveries.
The engineered Arabidopsis lines generate high sugar yields after pretreatment at 70 °C for 5 h and subsequent saccharification, while the wild type exhibits a reduced sugar yield relative to those obtained after pretreatment at 140 °C. Our results demonstrate that employing cell wall engineering efforts to decrease the recalcitrance of lignocellulosic biomass has the potential to drastically reduce the energy required for effective pretreatment.
木质纤维素生物质有可能成为生物燃料生产中可再生糖的主要来源。在进行酶水解之前,生物质必须首先进行预处理步骤,以便更容易糖化,并产生高产量的可发酵糖。木质素是一种复杂的、相互连接的酚类聚合物,与次生细胞壁多糖结合,使它们更难被酶水解。在此,我们描述了对木质素生物合成在纤维组织中受到抑制但在导管中保留,以及在纤维细胞中多糖沉积增强而对生长表型几乎没有明显负面影响的工程拟南芥系的分析。
将工程化的拟南芥植物用离子液体(IL)1-乙基-3-甲基咪唑鎓乙酸盐 1-乙基-3-甲基咪唑鎓乙酸盐([C2C1im][OAc])在 10%wt 生物质负载下于 70°C 处理 5 小时或 140°C 处理 3 小时。在 140°C 预处理和随后的糖化后,野生型的相对峰值糖回收率约为 26.7g 糖/100g 生物质,与工程化植物的峰值回收率约 25.8g 糖/100g 生物质(从起始生物质中 84%和 86%的葡萄糖)没有统计学差异。将预处理温度降低到 70°C 5 小时,导致野生型的峰值糖回收率显著降低至 16.2g 糖/100g 生物质,而木质素含量降低的工程化系表现出更高的峰值糖回收率,为 27.3g 糖/100g 生物质和 79%的葡萄糖回收率。
工程化的拟南芥系在 70°C 预处理 5 小时和随后的糖化后产生高糖产量,而野生型相对于在 140°C 预处理后获得的糖产量降低。我们的结果表明,采用细胞壁工程努力降低木质纤维素生物质的抗降解性,有可能大大降低有效预处理所需的能量。