Bykov Sergei V, Mao Michael, Gares Katie L, Asher Sanford A
University of Pittsburgh, Department of Chemistry, Pittsburgh, PA 15260 USA.
Appl Spectrosc. 2015 Aug;69(8):895-901. doi: 10.1366/15-07960. Epub 2015 Jul 1.
We describe a new compact acousto-optically Q-switched diode-pumped solid-state (DPSS) intracavity frequency-tripled neodymium-doped yttrium vanadate laser capable of producing ~100 mW of 213 nm power quasi-continuous wave as 15 ns pulses at a 30 kHz repetition rate. We use this new laser in a prototype of a deep ultraviolet (UV) Raman standoff spectrometer. We use a novel high-throughput, high-resolution Echelle Raman spectrograph. We measure the deep UV resonance Raman (UVRR) spectra of solid and solution sodium nitrate (NaNO3) and ammonium nitrate (NH4NO3) at a standoff distance of ~2.2 m. For this 2.2 m standoff distance and a 1 min spectral accumulation time, where we only monitor the symmetric stretching band, we find a solid state NaNO3 detection limit of ~100 μg/cm(2). We easily detect ~20 μM nitrate water solutions in 1 cm path length cells. As expected, the aqueous solutions UVRR spectra of NaNO3 and NH4NO3 are similar, showing selective resonance enhancement of the nitrate (NO3(-)) vibrations. The aqueous solution photochemistry is also similar, showing facile conversion of NO3(-) to nitrite (NO2(-)). In contrast, the observed UVRR spectra of NaNO3 and NH4NO3 powders significantly differ, because their solid-state photochemistries differ. Whereas solid NaNO3 photoconverts with a very low quantum yield to NaNO2, the NH4NO3 degrades with an apparent quantum yield of ~0.2 to gaseous species.
我们描述了一种新型紧凑型声光调Q二极管泵浦固态(DPSS)腔内三倍频掺钕钒酸钇激光器,它能够以30 kHz的重复频率产生15 ns脉冲,输出功率约为100 mW的213 nm准连续波。我们将这种新型激光器用于深紫外(UV)拉曼遥测光谱仪的原型中。我们使用了一种新型的高通量、高分辨率阶梯光栅拉曼光谱仪。我们在约2.2 m的遥测距离下测量了固态和溶液态硝酸钠(NaNO3)及硝酸铵(NH4NO3)的深紫外共振拉曼(UVRR)光谱。对于这个2.2 m的遥测距离和1分钟的光谱累积时间,在此期间我们仅监测对称伸缩带,我们发现固态NaNO3的检测限约为100 μg/cm²。我们能够轻松检测1 cm光程长度样品池中约20 μM的硝酸盐水溶液。正如预期的那样,NaNO3和NH4NO3水溶液的UVRR光谱相似,显示出硝酸根(NO3⁻)振动的选择性共振增强。水溶液的光化学性质也相似,显示出NO3⁻易于转化为亚硝酸根(NO2⁻)。相比之下,观察到的NaNO3和NH4NO3粉末的UVRR光谱有显著差异,因为它们的固态光化学性质不同。固态NaNO3以非常低的量子产率光转化为NaNO2,而NH4NO3以约0.2的表观量子产率降解为气态物质。