Chen Biao, Zhao Naiqin, Guo Lichao, He Fang, Shi Chunsheng, He Chunnian, Li Jiajun, Liu Enzuo
School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P.R. China.
Nanoscale. 2015 Aug 14;7(30):12895-905. doi: 10.1039/c5nr03334a.
Uniform transition metal sulfide deposition on a smooth TiO2 surface to form a coating structure is a well-known challenge, caused mainly due to their poor affinities. Herein, we report a facile strategy for fabricating mesoporous 3D few-layered (<4 layers) MoS2 coated TiO2 nanosheet core-shell nanocomposites (denoted as 3D FL-MoS2@TiO2) by a novel two-step method using a smooth TiO2 nanosheet as a template and glucose as a binder. The core-shell structure has been systematically examined and corroborated by transmission electron microscopy, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy analyses. It is found that the resultant 3D FL-MoS2@TiO2 as a lithium-ion battery anode delivers an outstanding high-rate capability with an excellent cycling performance, relating to the unique structure of 3D FL-MoS2@TiO2. The 3D uniform coverage of few-layered (<4 layers) MoS2 onto the TiO2 can remarkably enhance the structure stability and effectively shortens the transfer paths of both lithium ions and electrons, while the strong synergistic effect between MoS2 and TiO2 can significantly facilitate the transport of ions and electrons across the interfaces, especially in the high-rate charge-discharge process. Moreover, the facile fabrication strategy can be easily extended to design other oxide/carbon-sulfide/oxide core-shell materials for extensive applications.
在光滑的TiO₂表面均匀沉积过渡金属硫化物以形成涂层结构是一个众所周知的挑战,主要是由于它们之间的亲和力较差。在此,我们报道了一种简便的策略,通过一种新颖的两步法,以光滑的TiO₂纳米片为模板,葡萄糖为粘结剂,制备介孔三维少层(<4层)MoS₂包覆TiO₂纳米片核壳纳米复合材料(记为3D FL-MoS₂@TiO₂)。通过透射电子显微镜、扫描透射电子显微镜和X射线光电子能谱分析对核壳结构进行了系统研究和证实。结果发现,所得的3D FL-MoS₂@TiO₂作为锂离子电池负极具有出色的高倍率性能和优异的循环性能,这与3D FL-MoS₂@TiO₂的独特结构有关。少层(<4层)MoS₂在TiO₂上的三维均匀覆盖可以显著提高结构稳定性,并有效缩短锂离子和电子的传输路径,而MoS₂与TiO₂之间的强协同效应可以显著促进离子和电子在界面间的传输,特别是在高倍率充放电过程中。此外,这种简便的制备策略可以很容易地扩展到设计其他氧化物/碳-硫化物/氧化物核壳材料,以实现广泛应用。