Suppr超能文献

从与水、甲醇、乙醇和丙酮的混合物中分离苯:突出CuBTC中氢键和分子簇的影响

Separation of benzene from mixtures with water, methanol, ethanol, and acetone: highlighting hydrogen bonding and molecular clustering influences in CuBTC.

作者信息

Gutiérrez-Sevillano Juan José, Calero Sofia, Krishna Rajamani

机构信息

Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, Ctra. Utrera km 1, 41013 Sevilla, Spain.

出版信息

Phys Chem Chem Phys. 2015 Aug 21;17(31):20114-24. doi: 10.1039/c5cp02726h. Epub 2015 Jul 13.

Abstract

Configurational-bias Monte Carlo (CBMC) simulations are used to establish the potential of CuBTC for separation of water/benzene, methanol/benzene, ethanol/benzene, and acetone/benzene mixtures. For operations under pore saturation conditions, the separations are in favor of molecules that partner benzene; this is due to molecular packing effects that disfavor benzene. CBMC simulations for adsorption of quaternary water/methanol/ethanol/benzene mixtures show that water can be selectively adsorbed at pore saturation, making CuBTC effective in drying applications. Ideal Adsorbed Solution Theory (IAST) calculations anticipate the right hierarchy of component loadings but the quantitative agreement with CBMC mixture simulations is poor for all investigated mixtures. The failure of the IAST to provide reasonable quantitative predictions of mixture adsorption is attributable to molecular clustering effects that are induced by hydrogen bonding between water-water, methanol-methanol, and ethanol-ethanol molecule pairs. There is, however, no detectable hydrogen bonding between benzene and partner molecules in the investigated mixtures. As a consequence of molecular clustering, the activity coefficients of benzene in the mixtures is lowered below unity by one to three orders of magnitude at pore saturation; such drastic reductions cannot be adequately captured by the Wilson model, that does not explicitly account for molecular clustering. Molecular clustering effects are also shown to influence the loading dependence of the diffusivities of guest molecules.

摘要

构型偏置蒙特卡罗(CBMC)模拟用于确定CuBTC对水/苯、甲醇/苯、乙醇/苯和丙酮/苯混合物的分离潜力。在孔饱和条件下进行操作时,分离有利于与苯结合的分子;这是由于不利于苯的分子堆积效应。对四元水/甲醇/乙醇/苯混合物吸附的CBMC模拟表明,在孔饱和时水可以被选择性吸附,这使得CuBTC在干燥应用中有效。理想吸附溶液理论(IAST)计算预测了组分负载的正确顺序,但对于所有研究的混合物,与CBMC混合物模拟的定量一致性较差。IAST无法对混合物吸附提供合理的定量预测,这归因于水分子对、甲醇分子对和乙醇分子对之间的氢键诱导的分子聚集效应。然而,在所研究的混合物中,苯与结合分子之间没有可检测到的氢键。由于分子聚集,在孔饱和时,混合物中苯的活度系数降低到低于1,幅度为1到3个数量级;这种急剧降低无法被未明确考虑分子聚集的威尔逊模型充分捕捉。分子聚集效应还显示会影响客体分子扩散率的负载依赖性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验