Kaufman Gilad, Nejati Siamak, Sarfati Raphael, Boltyanskiy Rostislav, Loewenberg Michael, Dufresne Eric R, Osuji Chinedum O
Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA.
Soft Matter. 2015 Oct 14;11(38):7478-82. doi: 10.1039/c5sm00973a.
Composite microcapsules have been aggressively pursued as designed chemical entities for biomedical and other applications. Common preparations rely on multi-step, time consuming processes. Here, we present a single-step approach to fabricate such microcapsules with shells composed of nanoparticle-polyelectrolyte and protein-polyelectrolyte complexes, and demonstrate control of the mechanical and release properties of these constructs. Interfacial polyelectrolyte-nanoparticle and polyelectrolyte-protein complexation across a water-oil droplet interface results in the formation of capsules with shell thicknesses of a few μm. Silica shell microcapsules exhibited a significant plastic response at small deformations, whereas lysozyme incorporated shells displayed a more elastic response. We exploit the plasticity of nanoparticle incorporated shells to produce microcapsules with high aspect ratio protrusions by micropipette aspiration.
复合微胶囊作为用于生物医学和其他应用的设计化学实体,一直受到广泛关注。常见的制备方法依赖于多步骤、耗时的过程。在此,我们提出一种单步方法来制备这种微胶囊,其壳由纳米颗粒 - 聚电解质和蛋白质 - 聚电解质复合物组成,并展示了对这些构建体的机械性能和释放特性的控制。跨水 - 油滴界面的界面聚电解质 - 纳米颗粒和聚电解质 - 蛋白质络合导致形成壳厚度为几微米的胶囊。二氧化硅壳微胶囊在小变形时表现出显著的塑性响应,而掺入溶菌酶的壳表现出更具弹性的响应。我们利用掺入纳米颗粒的壳的可塑性,通过微量移液器抽吸制备具有高纵横比突起的微胶囊。