Suppr超能文献

低温空气-燃料等离子体中分子能量转移和化学反应的动力学机制。

Kinetic mechanism of molecular energy transfer and chemical reactions in low-temperature air-fuel plasmas.

作者信息

Adamovich Igor V, Li Ting, Lempert Walter R

机构信息

Nonequilibrium Thermodynamics Laboratory, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA

Nonequilibrium Thermodynamics Laboratory, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2015 Aug 13;373(2048). doi: 10.1098/rsta.2014.0336.

Abstract

This work describes the kinetic mechanism of coupled molecular energy transfer and chemical reactions in low-temperature air, H2-air and hydrocarbon-air plasmas sustained by nanosecond pulse discharges (single-pulse or repetitive pulse burst). The model incorporates electron impact processes, state-specific N(2) vibrational energy transfer, reactions of excited electronic species of N(2), O(2), N and O, and 'conventional' chemical reactions (Konnov mechanism). Effects of diffusion and conduction heat transfer, energy coupled to the cathode layer and gasdynamic compression/expansion are incorporated as quasi-zero-dimensional corrections. The model is exercised using a combination of freeware (Bolsig+) and commercial software (ChemKin-Pro). The model predictions are validated using time-resolved measurements of temperature and N(2) vibrational level populations in nanosecond pulse discharges in air in plane-to-plane and sphere-to-sphere geometry; temperature and OH number density after nanosecond pulse burst discharges in lean H(2)-air, CH(4)-air and C(2)H(4)-air mixtures; and temperature after the nanosecond pulse discharge burst during plasma-assisted ignition of lean H2-mixtures, showing good agreement with the data. The model predictions for OH number density in lean C(3)H(8)-air mixtures differ from the experimental results, over-predicting its absolute value and failing to predict transient OH rise and decay after the discharge burst. The agreement with the data for C(3)H(8)-air is improved considerably if a different conventional hydrocarbon chemistry reaction set (LLNL methane-n-butane flame mechanism) is used. The results of mechanism validation demonstrate its applicability for analysis of plasma chemical oxidation and ignition of low-temperature H(2)-air, CH(4)-air and C(2)H(4)-air mixtures using nanosecond pulse discharges. Kinetic modelling of low-temperature plasma excited propane-air mixtures demonstrates the need for development of a more accurate 'conventional' chemistry mechanism.

摘要

本文描述了由纳秒脉冲放电(单脉冲或重复脉冲串)维持的低温空气、氢气 - 空气和碳氢化合物 - 空气等离子体中耦合分子能量转移和化学反应的动力学机制。该模型纳入了电子碰撞过程、特定态的N₂振动能量转移、N₂、O₂、N和O的激发电子物种的反应以及“传统”化学反应(Konnov机制)。扩散和传导传热、耦合到阴极层的能量以及气体动力学压缩/膨胀的影响作为准零维修正纳入。该模型使用免费软件(Bolsig +)和商业软件(ChemKin - Pro)相结合进行运算。通过对平面到平面和球到球几何结构的空气中纳秒脉冲放电中温度和N₂振动能级分布的时间分辨测量;贫氢 - 空气、甲烷 - 空气和乙烯 - 空气混合物中纳秒脉冲串放电后的温度和OH数密度;以及贫氢混合物等离子体辅助点火期间纳秒脉冲放电串后的温度进行验证,模型预测结果与数据显示出良好的一致性。贫丙烷 - 空气混合物中OH数密度的模型预测与实验结果不同,高估了其绝对值,并且未能预测放电串后OH的瞬态上升和衰减。如果使用不同的传统碳氢化合物化学反应集(劳伦斯利弗莫尔国家实验室甲烷 - 正丁烷火焰机制),则丙烷 - 空气的数据一致性会有显著改善。机制验证结果表明其适用于分析使用纳秒脉冲放电的低温氢气 - 空气、甲烷 - 空气和乙烯 - 空气混合物的等离子体化学氧化和点火。低温等离子体激发丙烷 - 空气混合物的动力学建模表明需要开发更准确的“传统”化学机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验