Li R, Buras E, Lee J, Liu R, Liu V, Espiritu C, Ozer K, Thompson B, Nally L, Yuan G, Oka K, Chang B, Samson S, Yechoor V, Chan L
DRC and Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
Gene Ther. 2015 Nov;22(11):876-82. doi: 10.1038/gt.2015.62. Epub 2015 Jul 14.
Islet transplantation for type 1 diabetes is limited by a shortage of donor islets and requirement for immunosuppression. We approached this problem by inducing in vivo islet neogenesis in non-obese diabetic (NOD) diabetic mice, a model of autoimmune diabetes. We demonstrate that gene therapy with helper-dependent adenovirus carrying neurogenin3 (Ngn3), an islet lineage-defining transcription factor, and betacellulin (Btc), an islet growth factor, leads to the induction of periportal insulin-positive cell clusters in the liver, which are rapidly destroyed. To specifically accord protection to these 'neo-islets' from cytokine-mediated destruction, we overexpressed suppressor of cytokine signaling 1 (SOCS1) gene, using a rat insulin promoter in combination with Ngn3 and Btc. With this approach, about half of diabetic mice attained euglycemia sustained for over 4 months, regain glucose tolerance and appropriate glucose-stimulated insulin secretion. Histological analysis revealed periportal islet hormone-expressing 'neo-islets' in treated mouse livers. Despite evidence of persistent 'insulitis' with activated T cells, these 'neo-islets' persist to maintain euglycemia. This therapy does not affect diabetogenicity of splenocytes, as they retain the ability to transfer diabetes. This study thus provides a proof-of-concept for engineering in vivo islet neogenesis with targeted resistance to cytokine-mediated destruction to provide a long-term reversal of diabetes in NOD mice.
1型糖尿病的胰岛移植受到供体胰岛短缺和免疫抑制需求的限制。我们通过在非肥胖糖尿病(NOD)小鼠(一种自身免疫性糖尿病模型)体内诱导胰岛新生来解决这个问题。我们证明,用携带胰岛谱系定义转录因子神经生成素3(Ngn3)和胰岛生长因子β细胞ulin(Btc)的辅助依赖型腺病毒进行基因治疗,可导致肝脏门周胰岛素阳性细胞簇的诱导,但这些细胞簇会迅速被破坏。为了特异性地保护这些“新胰岛”免受细胞因子介导的破坏,我们使用大鼠胰岛素启动子与Ngn3和Btc联合过表达细胞因子信号传导抑制因子1(SOCS1)基因。通过这种方法,约一半的糖尿病小鼠实现了持续4个月以上的血糖正常,恢复了葡萄糖耐量并具有适当的葡萄糖刺激胰岛素分泌。组织学分析显示,治疗后的小鼠肝脏中有门周表达胰岛激素的“新胰岛”。尽管有证据表明存在活化T细胞导致的持续性“胰岛炎”,但这些“新胰岛”仍持续存在以维持血糖正常。这种治疗不影响脾细胞的致糖尿病性,因为它们保留了转移糖尿病的能力。因此,本研究为通过对细胞因子介导的破坏进行靶向抗性来工程化体内胰岛新生以实现NOD小鼠糖尿病的长期逆转提供了概念验证。