Moyses Henrique W, Bauer Ross O, Grosberg Alexander Y, Grier David G
Department of Physics and Center for Soft Matter Research, New York University, New York, New York 10003, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jun;91(6):062144. doi: 10.1103/PhysRevE.91.062144. Epub 2015 Jun 30.
Brownian vortexes are stochastic machines that use static nonconservative force fields to bias random thermal fluctuations into steadily circulating currents. The archetype for this class of systems is a colloidal sphere in an optical tweezer. Trapped near the focus of a strongly converging beam of light, the particle is displaced by random thermal kicks into the nonconservative part of the optical force field arising from radiation pressure, which then biases its diffusion. Assuming the particle remains localized within the trap, its time-averaged trajectory traces out a toroidal vortex. Unlike trivial Brownian vortexes, such as the biased Brownian pendulum, which circulate preferentially in the direction of the bias, the general Brownian vortex can change direction and even topology in response to temperature changes. Here we introduce a theory based on a perturbative expansion of the Fokker-Planck equation for weak nonconservative driving. The first-order solution takes the form of a modified Boltzmann relation and accounts for the rich phenomenology observed in experiments on micrometer-scale colloidal spheres in optical tweezers.
布朗涡旋是一种随机机器,它利用静态非保守力场将随机热涨落偏向稳定的循环电流。这类系统的原型是光镊中的胶体球。粒子被困在强会聚光束的焦点附近,被随机热冲击驱赶到由辐射压力产生的光力场的非保守部分,这进而使粒子的扩散产生偏向。假设粒子保持在陷阱内,其时间平均轨迹描绘出一个环形涡旋。与平凡的布朗涡旋不同,比如偏向布朗摆,它优先沿偏向方向循环,一般的布朗涡旋可以响应温度变化而改变方向甚至拓扑结构。在此,我们基于福克 - 普朗克方程针对弱非保守驱动的微扰展开引入一种理论。一阶解采用修正玻尔兹曼关系的形式,并解释了在光镊中微米级胶体球实验中观察到的丰富现象学。