Roy Arpita, Kundu Niloy, Banik Debasis, Kuchlyan Jagannath, Sarkar Nilmoni
Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India.
Phys Chem Chem Phys. 2015 Aug 14;17(30):19977-90. doi: 10.1039/c5cp02296g.
The triblock copolymer of the type (PEO)20-(PPO)70-(PEO)20 (P123) forms a mixed supramolecular aggregate with different bile salts, sodium deoxycholate (NaDC) and sodium taurocholate (NaTC), having different hydrophobicity. These mixed micellar systems have been investigated through dynamic light scattering (DLS) and other various spectroscopic techniques. DLS measurements reveal that the bile salts penetrate into the core-corona region of the P123 micelle and further addition of bile salts causes formation of a new supramolecular aggregate. Further CONTIN analysis confirms existence of two types of complexes at higher molar ratios of bile salt-P123 (>1 : 3). Due to the bile salt penetration, the polarity of the core-corona region of bile salt-P123 mixed micelle increases which results in red shift in the absorption and emission spectra of coumarin 153 (C153) and coumarin 480 (C480). The rotational diffusion of the hydrophobic probe C153 and a hydrophilic probe C480 has been investigated in these bile salt-P123 mixed systems and for both the probes a decrease in the average reorientation time has been observed. The reason behind this decrease in the average reorientation time is the increase in both polarity and hydration of the core-corona region in these mixed micelles. Moreover, these bile salt-P123 mixed micelles are characterized by fluorescence correlation spectroscopy (FCS) techniques. As hydrophobic solute 4-(dicyanomethylene)-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran (DCM) resides in the core region of the bile salt-P123 mixed micelles, the translational diffusion of DCM becomes faster in these mixed micelles compared to that in pure P123 micelle. However, for cationic probe rhodamine 6G perchlorate (R6G), a totally opposite trend in the translational diffusion coefficients has been observed. Both anisotropy and FCS measurements confirm that bile salts affect the core region of the P123 micelle more than the corona region. Besides, all these characterizations confirm that more hydrophobic NaDC interacts in a better way than NaTC with the P123 micelle.
(聚环氧乙烷)20 -(聚环氧丙烷)70 -(聚环氧乙烷)20(P123)这种类型的三嵌段共聚物与具有不同疏水性的不同胆盐,即脱氧胆酸钠(NaDC)和牛磺胆酸钠(NaTC),形成混合超分子聚集体。已通过动态光散射(DLS)和其他各种光谱技术对这些混合胶束系统进行了研究。DLS测量表明,胆盐会渗透到P123胶束的核 - 冠区域,进一步添加胆盐会导致形成一种新的超分子聚集体。进一步的CONTIN分析证实,在胆盐 - P123的摩尔比更高(>1∶3)时存在两种类型的复合物。由于胆盐的渗透,胆盐 - P123混合胶束的核 - 冠区域的极性增加,这导致香豆素153(C153)和香豆素480(C480)的吸收光谱和发射光谱发生红移。已在这些胆盐 - P123混合体系中研究了疏水探针C153和亲水探针C480的旋转扩散,并且对于这两种探针,均观察到平均重取向时间减少。平均重取向时间减少的背后原因是这些混合胶束中核 - 冠区域的极性和水合作用均增加。此外,这些胆盐 - P123混合胶束通过荧光相关光谱(FCS)技术进行表征。由于疏水性溶质4 -(二氰基亚甲基)-2 - 甲基 - 6 -(对二甲氨基苯乙烯基)-4H - 吡喃(DCM)位于胆盐 - P123混合胶束的核心区域,与在纯P123胶束中相比,DCM在这些混合胶束中的平移扩散变得更快。然而,对于阳离子探针高氯酸罗丹明6G(R6G),观察到平移扩散系数呈现完全相反的趋势。各向异性和FCS测量均证实,胆盐对P123胶束核心区域的影响大于对冠区域 的影响。此外,所有这些表征均证实,疏水性更强的NaDC与P123胶束的相互作用比NaTC更好。