Zou Wei, Senthilkumar D V, Nagao Raphael, Kiss István Z, Tang Yang, Koseska Aneta, Duan Jinqiao, Kurths Jürgen
School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China.
Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074, China.
Nat Commun. 2015 Jul 15;6:7709. doi: 10.1038/ncomms8709.
Oscillatory behaviour is essential for proper functioning of various physical and biological processes. However, diffusive coupling is capable of suppressing intrinsic oscillations due to the manifestation of the phenomena of amplitude and oscillation deaths. Here we present a scheme to revoke these quenching states in diffusively coupled dynamical networks, and demonstrate the approach in experiments with an oscillatory chemical reaction. By introducing a simple feedback factor in the diffusive coupling, we show that the stable (in)homogeneous steady states can be effectively destabilized to restore dynamic behaviours of coupled systems. Even a feeble deviation from the normal diffusive coupling drastically shrinks the death regions in the parameter space. The generality of our method is corroborated in diverse non-linear systems of diffusively coupled paradigmatic models with various death scenarios. Our study provides a general framework to strengthen the robustness of dynamic activity in diffusively coupled dynamical networks.
振荡行为对于各种物理和生物过程的正常运作至关重要。然而,由于振幅死亡和振荡死亡现象的出现,扩散耦合能够抑制内在振荡。在此,我们提出一种方案来消除扩散耦合动力网络中的这些猝灭状态,并在一个振荡化学反应实验中演示该方法。通过在扩散耦合中引入一个简单的反馈因子,我们表明稳定的(非)均匀稳态能够被有效地破坏,以恢复耦合系统的动态行为。即使与正常扩散耦合有微小偏差,也会极大地缩小参数空间中的死亡区域。我们的方法的通用性在具有各种死亡情形的扩散耦合典型模型的不同非线性系统中得到了证实。我们的研究提供了一个通用框架,以增强扩散耦合动力网络中动态活动的鲁棒性。