阿尔茨海默病神经影像学倡议(ADNI)中定量轻度认知障碍(MCI)和阿尔茨海默病(AD)表型的遗传学研究:进展、机遇与计划

Genetic studies of quantitative MCI and AD phenotypes in ADNI: Progress, opportunities, and plans.

作者信息

Saykin Andrew J, Shen Li, Yao Xiaohui, Kim Sungeun, Nho Kwangsik, Risacher Shannon L, Ramanan Vijay K, Foroud Tatiana M, Faber Kelley M, Sarwar Nadeem, Munsie Leanne M, Hu Xiaolan, Soares Holly D, Potkin Steven G, Thompson Paul M, Kauwe John S K, Kaddurah-Daouk Rima, Green Robert C, Toga Arthur W, Weiner Michael W

机构信息

Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.

Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.

出版信息

Alzheimers Dement. 2015 Jul;11(7):792-814. doi: 10.1016/j.jalz.2015.05.009.

Abstract

INTRODUCTION

Genetic data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) have been crucial in advancing the understanding of Alzheimer's disease (AD) pathophysiology. Here, we provide an update on sample collection, scientific progress and opportunities, conceptual issues, and future plans.

METHODS

Lymphoblastoid cell lines and DNA and RNA samples from blood have been collected and banked, and data and biosamples have been widely disseminated. To date, APOE genotyping, genome-wide association study (GWAS), and whole exome and whole genome sequencing data have been obtained and disseminated.

RESULTS

ADNI genetic data have been downloaded thousands of times, and >300 publications have resulted, including reports of large-scale GWAS by consortia to which ADNI contributed. Many of the first applications of quantitative endophenotype association studies used ADNI data, including some of the earliest GWAS and pathway-based studies of biospecimen and imaging biomarkers, as well as memory and other clinical/cognitive variables. Other contributions include some of the first whole exome and whole genome sequencing data sets and reports in healthy controls, mild cognitive impairment, and AD.

DISCUSSION

Numerous genetic susceptibility and protective markers for AD and disease biomarkers have been identified and replicated using ADNI data and have heavily implicated immune, mitochondrial, cell cycle/fate, and other biological processes. Early sequencing studies suggest that rare and structural variants are likely to account for significant additional phenotypic variation. Longitudinal analyses of transcriptomic, proteomic, metabolomic, and epigenomic changes will also further elucidate dynamic processes underlying preclinical and prodromal stages of disease. Integration of this unique collection of multiomics data within a systems biology framework will help to separate truly informative markers of early disease mechanisms and potential novel therapeutic targets from the vast background of less relevant biological processes. Fortunately, a broad swath of the scientific community has accepted this grand challenge.

摘要

引言

阿尔茨海默病神经影像倡议(ADNI)的基因数据对于推进对阿尔茨海默病(AD)病理生理学的理解至关重要。在此,我们提供关于样本采集、科学进展与机遇、概念问题以及未来计划的最新情况。

方法

已收集并储存了来自血液的淋巴母细胞系以及DNA和RNA样本,数据和生物样本已广泛传播。迄今为止,已获得并传播了APOE基因分型、全基因组关联研究(GWAS)以及全外显子组和全基因组测序数据。

结果

ADNI基因数据已被下载数千次,并产生了300多篇出版物,包括ADNI参与的联盟进行的大规模GWAS报告。定量内表型关联研究的许多首次应用使用了ADNI数据,包括一些最早的GWAS以及基于通路的生物样本和影像生物标志物研究,还有记忆及其他临床/认知变量的研究。其他贡献包括一些最早的健康对照、轻度认知障碍和AD的全外显子组和全基因组测序数据集及报告。

讨论

使用ADNI数据已鉴定并重复验证了众多AD的遗传易感性和保护性标志物以及疾病生物标志物,并强烈涉及免疫、线粒体、细胞周期/命运和其他生物学过程。早期测序研究表明,罕见和结构变异可能会导致显著的额外表型变异。对转录组、蛋白质组、代谢组和表观基因组变化的纵向分析也将进一步阐明疾病临床前和前驱期的动态过程。在系统生物学框架内整合这一独特的多组学数据集合,将有助于从大量不太相关的生物学过程背景中分离出真正具有信息价值的早期疾病机制标志物和潜在的新型治疗靶点。幸运的是,广大科学界已接受了这一重大挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索