Suppr超能文献

通过调节La(Fe,Si)13化合物中的Fe-Fe磁交换耦合实现宽负热膨胀工作温度窗口

Broad Negative Thermal Expansion Operation-Temperature Window Achieved by Adjusting Fe-Fe Magnetic Exchange Coupling in La(Fe,Si)13 Compounds.

作者信息

Li Shaopeng, Huang Rongjin, Zhao Yuqiang, Li Wen, Wang Wei, Huang Chuanjun, Gong Pifu, Lin Zheshuai, Li Laifeng

机构信息

†State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.

§University of Chinese Academy of Sciences, Beijing 100049, P.R. China.

出版信息

Inorg Chem. 2015 Aug 17;54(16):7868-72. doi: 10.1021/acs.inorgchem.5b00908. Epub 2015 Jul 21.

Abstract

Cubic La(Fe,Si)13-based compounds have been recently developed as promising negative thermal expansion(NTE) materials, but the narrow NTE operation-temperature window(∼110 K) restricts their actual applications. In this work, we demonstrate that the NTE operation-temperature window of LaFe(13-x)Si(x) can be significantly broadened by adjusting Fe-Fe magnetic exchange coupling as x ranges from 2.8 to 3.1. In particular, the NTE operation-temperature window of LaFe10.1Si2.9 is extended to 220 K. More attractively, the coefficients of thermal expansion of LaFe10.0Si3.0 and LaFe9.9Si3.1 are homogeneous in the NTE operation-temperature range of about 200 K, which is much valuable for the stability of fabricating devices. The further experimental characterizations combined with first-principles studies reveal that the tetragonal phase is gradually introduced into the cubic phase as the Si content increases, hence modifies the Fe-Fe interatomic distance. The reduction of the overall Fe-Fe magnetic exchange interactions contributes to the broadness of NTE operation-temperature window for LaFe(13-x)Si(x).

摘要

基于立方结构的La(Fe,Si)13化合物最近已被开发成为有前景的负热膨胀(NTE)材料,但狭窄的NTE工作温度窗口(约110 K)限制了它们的实际应用。在这项工作中,我们证明了随着x在2.8至3.1范围内变化,通过调整Fe-Fe磁交换耦合,LaFe(13-x)Si(x)的NTE工作温度窗口可以显著拓宽。特别是,LaFe10.1Si2.9的NTE工作温度窗口扩展到了220 K。更吸引人的是,LaFe10.0Si3.0和LaFe9.9Si3.1的热膨胀系数在约200 K的NTE工作温度范围内是均匀的,这对于制造器件的稳定性非常有价值。进一步的实验表征与第一性原理研究表明,随着Si含量的增加,四方相逐渐引入立方相,从而改变了Fe-Fe原子间距离。LaFe(13-x)Si(x)的NTE工作温度窗口变宽是由于整体Fe-Fe磁交换相互作用的减弱。

相似文献

2
Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds.
J Am Chem Soc. 2013 Aug 7;135(31):11469-72. doi: 10.1021/ja405161z. Epub 2013 Jul 29.
3
Abnormal thermal expansion properties of cubic NaZn13-type La(Fe,Al)13 compounds.
Phys Chem Chem Phys. 2015 Feb 28;17(8):5556-60. doi: 10.1039/c4cp05064a.
4
Cryogenic abnormal thermal expansion properties of carbon-doped La(Fe,Si)13 compounds.
Phys Chem Chem Phys. 2015 Dec 14;17(46):30999-1003. doi: 10.1039/c5cp03948g.
7
Controllable Negative Thermal Expansion by Mechanical Pulverizing in Hexagonal MnCoGe Compounds.
Inorg Chem. 2018 Nov 19;57(22):14199-14207. doi: 10.1021/acs.inorgchem.8b02195. Epub 2018 Nov 7.
8
Giant negative thermal expansion in bonded MnCoGe-based compounds with Ni2In-type hexagonal structure.
J Am Chem Soc. 2015 Feb 11;137(5):1746-9. doi: 10.1021/ja510693a. Epub 2015 Feb 2.
9
Tailoring Negative Thermal Expansion via Tunable Induced Strain in La-Fe-Si-Based Multifunctional Material.
ACS Appl Mater Interfaces. 2022 Sep 28;14(38):43498-43507. doi: 10.1021/acsami.2c11586. Epub 2022 Sep 13.

引用本文的文献

1
An isotropic zero thermal expansion alloy with super-high toughness.
Nat Commun. 2024 Mar 13;15(1):2252. doi: 10.1038/s41467-024-46613-0.
2
Tailoring Negative Thermal Expansion via Tunable Induced Strain in La-Fe-Si-Based Multifunctional Material.
ACS Appl Mater Interfaces. 2022 Sep 28;14(38):43498-43507. doi: 10.1021/acsami.2c11586. Epub 2022 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验