Suppr超能文献

耗散量子系统稳态的变分矩阵乘积算符。

Variational Matrix Product Operators for the Steady State of Dissipative Quantum Systems.

机构信息

QOLS, Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom.

Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany.

出版信息

Phys Rev Lett. 2015 Jun 5;114(22):220601. doi: 10.1103/PhysRevLett.114.220601. Epub 2015 Jun 4.

Abstract

We present a new variational method based on the matrix product operator (MPO) ansatz, for finding the steady state of dissipative quantum chains governed by master equations of the Lindblad form. Instead of requiring an accurate representation of the system evolution until the stationary state is attained, the algorithm directly targets the final state, thus, allowing for a faster convergence when the steady state is a MPO with small bond dimension. Our numerical simulations for several dissipative spin models over a wide range of parameters illustrate the performance of the method and show that, indeed, the stationary state is often well described by a MPO of very moderate dimensions.

摘要

我们提出了一种新的基于矩阵乘积算符(MPO)基态的变分方法,用于寻找由林德布拉德形式的主方程控制的耗散量子链的稳态。该算法不需要精确表示系统的演化,直到达到稳态,而是直接针对最终状态,因此,当稳态是一个具有小键维数的 MPO 时,它可以更快地收敛。我们对几个耗散自旋模型在广泛参数范围内的数值模拟说明了该方法的性能,并表明,实际上,稳态通常可以通过非常适中维度的 MPO 很好地描述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验