Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA.
Department of Mathematics, California Institute of Technology, 253-37, Pasadena, California 91125, USA.
Phys Rev Lett. 2015 Jun 5;114(22):221601. doi: 10.1103/PhysRevLett.114.221601. Epub 2015 Jun 2.
The Ryu-Takayanagi formula relates the entanglement entropy in a conformal field theory to the area of a minimal surface in its holographic dual. We show that this relation can be inverted for any state in the conformal field theory to compute the bulk stress-energy tensor near the boundary of the bulk spacetime, reconstructing the local data in the bulk from the entanglement on the boundary. We also show that positivity, monotonicity, and convexity of the relative entropy for small spherical domains between the reduced density matrices of any state and of the ground state of the conformal field theory are guaranteed by positivity conditions on the bulk matter energy density. As positivity and monotonicity of the relative entropy are general properties of quantum systems, this can be interpreted as a derivation of bulk energy conditions in any holographic system for which the Ryu-Takayanagi prescription applies. We discuss an information theoretical interpretation of the convexity in terms of the Fisher metric.
柳-塔卡亚尼吉公式将共形场论中的纠缠熵与全息对偶中的最小曲面面积联系起来。我们表明,对于共形场论中的任何态,这个关系都可以反演,以计算体时空边界附近的体应力-能量张量,从边界上的纠缠中重建体内部的局部数据。我们还表明,对于任何态的约化密度矩阵和共形场论的基态之间的小球形域的相对熵的正定性、单调性和凸性,由体物质能量密度的正定性条件保证。由于相对熵的正定性和单调性是量子系统的一般性质,因此可以将其解释为适用于柳-塔卡亚尼吉规则适用的任何全息系统的体能量条件的推导。我们讨论了根据费希尔度量对凸性的信息理论解释。