Halder Kangkan, Dölker Nicole, Van Qui, Gregor Ingo, Dickmanns Achim, Baade Imke, Kehlenbach Ralph H, Ficner Ralf, Enderlein Jörg, Grubmüller Helmut, Neumann Heinz
Free Floater (Junior) Research Group "Applied Synthetic Biology", Institute for Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany.
Department of Theoretical and Computational Biophysics, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany.
Biophys J. 2015 Jul 21;109(2):277-86. doi: 10.1016/j.bpj.2015.06.014.
The nuclear pore complex mediates nucleocytoplasmic transport of macromolecules in eukaryotic cells. Transport through the pore is restricted by a hydrophobic selectivity filter comprising disordered phenylalanine-glycine-rich repeats of nuclear pore proteins. Exchange through the pore requires specialized transport receptors, called exportins and importins, that interact with cargo proteins in a RanGTP-dependent manner. These receptors are highly flexible superhelical structures composed of HEAT-repeat motifs that adopt various degrees of extension in crystal structures. Here, we performed molecular-dynamics simulations using crystal structures of Importin-β in its free form or in complex with nuclear localization signal peptides as the starting conformation. Our simulations predicted that initially compact structures would adopt extended conformations in hydrophilic buffers, while contracted conformations would dominate in more hydrophobic solutions, mimicking the environment of the nuclear pore. We confirmed this experimentally by Förster resonance energy transfer experiments using dual-fluorophore-labeled Importin-β. These observations explain seemingly contradictory crystal structures and suggest a possible mechanism for cargo protection during passage of the nuclear pore. Such hydrophobic switching may be a general principle for environmental control of protein function.
核孔复合体介导真核细胞中大分子的核质运输。通过核孔的运输受到一个疏水选择性过滤器的限制,该过滤器由核孔蛋白中富含苯丙氨酸 - 甘氨酸的无序重复序列组成。通过核孔的交换需要特殊的运输受体,即输出蛋白和输入蛋白,它们以RanGTP依赖的方式与货物蛋白相互作用。这些受体是高度灵活的超螺旋结构,由HEAT重复基序组成,在晶体结构中呈现出不同程度的伸展。在这里,我们以游离形式或与核定位信号肽结合的形式的输入蛋白β的晶体结构作为起始构象进行了分子动力学模拟。我们的模拟预测,最初紧密的结构在亲水性缓冲液中会采用伸展构象,而收缩构象在更疏水的溶液中占主导,模拟核孔的环境。我们通过使用双荧光团标记的输入蛋白β的Förster共振能量转移实验对此进行了实验验证。这些观察结果解释了看似矛盾的晶体结构,并提出了核孔通过过程中货物保护的可能机制。这种疏水开关可能是蛋白质功能环境控制的一般原则。