Departamento de Química Física I, Facultad de Química, Universidad Complutense de Madrid, Madrid 28040, Spain.
Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA.
Nat Chem. 2015 Aug;7(8):661-7. doi: 10.1038/nchem.2295. Epub 2015 Jun 29.
Interferences are genuine quantum phenomena that appear whenever two seemingly distinct classical trajectories lead to the same outcome. They are common in elastic scattering but are seldom observable in chemical reactions. Here we report experimental measurements of the state-to-state angular distribution for the H + D2 reaction using the 'photoloc' technique. For products in low rotational and vibrational states, a characteristic oscillation pattern governs backward scattering. The comparison between the experiments, rigorous quantum calculations and classical trajectories on an accurate potential energy surface allows us to trace the origin of that structure to the quantum interference between different quasiclassical mechanisms, a phenomenon analogous to that observed in the double-slit experiment.
干涉是真实的量子现象,当两个看似不同的经典轨迹导致相同的结果时就会出现。它们在弹性散射中很常见,但在化学反应中很少观察到。在这里,我们使用“光定位”技术报告了 H + D2 反应的态态角分布的实验测量结果。对于低转动和振动态的产物,特征的振荡模式控制着向后散射。实验、严格的量子计算和在精确势能面上的经典轨迹之间的比较使我们能够追踪该结构的起源,该结构归因于不同准经典机制之间的量子干涉,这一现象类似于在双缝实验中观察到的现象。