Arukuusk Piret, Pärnaste Ly, Hällbrink Mattias, Langel Ülo
Laboratory of Molecular Biotechnology, Institute of Technology, Tartu University, Nooruse 1/517, Tartu, 50411, Estonia,
Methods Mol Biol. 2015;1324:303-15. doi: 10.1007/978-1-4939-2806-4_19.
Nucleic acids can be utilized in gene therapy to restore, alter, or silence gene functions. In order to reveal the biological activity nucleic acids have to reach their intracellular targets by passing through the plasma membrane, which is impermeable for these large and negatively charged molecules. Cell-penetrating peptides (CPPs) condense nucleic acids into nanoparticles using non-covalent complexation strategy and mediate their delivery into the cell, whereas the physicochemical parameters of the nanoparticles determine the interactions with the membranes, uptake mechanism, and subsequent intracellular fate. The nanoparticles are mostly internalized by endocytosis that leads to the entrapment of them in endosomal vesicles. Therefore design of new CPPs that are applicable for non-covalent complex formation strategy and harness endosomolytic properties is highly vital. Here we demonstrate that PepFects and NickFects are efficient vectors for the intracellular delivery of various nucleic acids.This chapter describes how to form CPP/pDNA nanoparticles, evaluate stable nanoparticles formation, and assess gene delivery efficacy.
核酸可用于基因治疗,以恢复、改变或沉默基因功能。为了揭示其生物活性,核酸必须穿过质膜才能到达细胞内靶点,而质膜对这些大的带负电荷的分子是不可渗透的。细胞穿透肽(CPPs)利用非共价络合策略将核酸浓缩成纳米颗粒,并介导其进入细胞,而纳米颗粒的物理化学参数决定了与膜的相互作用、摄取机制以及随后的细胞内命运。纳米颗粒大多通过内吞作用被内化,这导致它们被困在内体小泡中。因此,设计适用于非共价复合物形成策略并具有溶酶体溶解特性的新型CPPs至关重要。在这里,我们证明了PepFects和NickFects是用于各种核酸细胞内递送的有效载体。本章描述了如何形成CPP/pDNA纳米颗粒、评估稳定纳米颗粒的形成以及评估基因递送效率。