Suppr超能文献

对枯草芽孢杆菌丙氨酸脱氢酶进行工程改造以获得新型辅因子特异性。

Engineering of alanine dehydrogenase from Bacillus subtilis for novel cofactor specificity.

作者信息

Lerchner Alexandra, Jarasch Alexander, Skerra Arne

机构信息

Munich Center for integrated Protein Science (CiPSM) and Lehrstuhl für Biologische Chemie, Technische Universität München, Freising-Weihenstephan, Germany.

出版信息

Biotechnol Appl Biochem. 2016 Sep;63(5):616-624. doi: 10.1002/bab.1414. Epub 2015 Sep 11.

Abstract

The l-alanine dehydrogenase of Bacillus subtilis (BasAlaDH), which is strictly dependent on NADH as redox cofactor, efficiently catalyzes the reductive amination of pyruvate to l-alanine using ammonia as amino group donor. To enable application of BasAlaDH as regenerating enzyme in coupled reactions with NADPH-dependent alcohol dehydrogenases, we alterated its cofactor specificity from NADH to NADPH via protein engineering. By introducing two amino acid exchanges, D196A and L197R, high catalytic efficiency for NADPH was achieved, with k /K  = 54.1 µM  Min (K  = 32 ± 3 µM; k  = 1,730 ± 39 Min ), almost the same as the wild-type enzyme for NADH (k /K  = 59.9 µM  Min ; K  = 14 ± 2 µM; k  = 838 ± 21 Min ). Conversely, recognition of NADH was much diminished in the mutated enzyme (k /K  = 3 µM  Min ). BasAlaDH(D196A/L197R) was applied in a coupled oxidation/transamination reaction of the chiral dicyclic dialcohol isosorbide to its diamines, catalyzed by Ralstonia sp. alcohol dehydrogenase and Paracoccus denitrificans ω-aminotransferase, thus allowing recycling of the two cosubstrates NADP and l-Ala. An excellent cofactor regeneration with recycling factors of 33 for NADP and 13 for l-Ala was observed with the engineered BasAlaDH in a small-scale biocatalysis experiment. This opens a biocatalytic route to novel building blocks for industrial high-performance polymers.

摘要

枯草芽孢杆菌的L-丙氨酸脱氢酶(BasAlaDH)严格依赖NADH作为氧化还原辅因子,以氨作为氨基供体,高效催化丙酮酸还原胺化生成L-丙氨酸。为了使BasAlaDH能够作为再生酶应用于与依赖NADPH的醇脱氢酶的偶联反应中,我们通过蛋白质工程将其辅因子特异性从NADH改变为NADPH。通过引入两个氨基酸替换D196A和L197R,实现了对NADPH的高催化效率,k /K = 54.1 μM Min(K = 32 ± 3 μM;k = 1,730 ± 39 Min ),几乎与野生型酶对NADH的催化效率相同(k /K = 59.9 μM Min ;K = 14 ± 2 μM;k = 838 ± 21 Min )。相反,突变酶对NADH的识别能力大大降低(k /K = 3 μM Min )。BasAlaDH(D196A/L197R)应用于手性双环二醇异山梨醇向其二胺的偶联氧化/转氨反应中,该反应由罗尔斯通氏菌属醇脱氢酶和反硝化副球菌ω-转氨酶催化,从而实现了两种共底物NADP和L-Ala的循环利用。在小规模生物催化实验中,工程化的BasAlaDH实现了出色的辅因子再生,NADP的循环因子为33,L-Ala的循环因子为13。这为工业高性能聚合物的新型结构单元开辟了一条生物催化途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验