Kozlova Tatiana, Zandbergen Henny W
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands.
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands.
Ultramicroscopy. 2015 Nov;158:74-80. doi: 10.1016/j.ultramic.2015.06.017. Epub 2015 Jul 11.
We used a combination of in situ TEM, a MEMS-based heater as a substrate and a dedicated biasing sample holder to study the temperature dependence of electromigration in Pt nanobridges (500 nm wide, 15 nm high and 1000 nm long). We visualised changes in the nanobridges under both dynamic conditions, i.e. heating (substrate temperatures up to 660 K) and current passage. Our electromigration experiments at various substrate temperatures (100, 300, 420 and 660 K) show the same tendency: material transport occurs from the cathode to the anode side, which can be explained by the electron-wind force. In all cases the bridge breaks due to the formation of a neck closer to the cathode side. At 300, 420 and 660 K, voids and the neck form at the cathode contact pad simultaneously. The higher the temperature, the bigger the voids size. As expected, at higher temperatures a lower power is needed to break the nanobridge.
我们使用原位透射电子显微镜、基于微机电系统的加热器作为衬底以及专用的偏置样品架相结合的方法,来研究铂纳米桥(宽500纳米、高15纳米、长1000纳米)中电迁移的温度依赖性。我们观察了纳米桥在动态条件下的变化,即加热(衬底温度高达660 K)和有电流通过时的变化。我们在不同衬底温度(100、300、420和660 K)下进行的电迁移实验显示出相同的趋势:物质从阴极向阳极侧传输,这可以用电子风力来解释。在所有情况下,桥都会由于在靠近阴极侧形成缩颈而断裂。在300、420和660 K时,阴极接触垫处会同时形成空洞和缩颈。温度越高,空洞尺寸越大。正如预期的那样,在较高温度下,打破纳米桥所需的功率较低。