Suppr超能文献

具有多级活性空间的密度矩阵重整化群算法

Density-matrix renormalization group algorithm with multi-level active space.

作者信息

Ma Yingjin, Wen Jing, Ma Haibo

机构信息

Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, China.

出版信息

J Chem Phys. 2015 Jul 21;143(3):034105. doi: 10.1063/1.4926833.

Abstract

The density-matrix renormalization group (DMRG) method, which can deal with a large active space composed of tens of orbitals, is nowadays widely used as an efficient addition to traditional complete active space (CAS)-based approaches. In this paper, we present the DMRG algorithm with a multi-level (ML) control of the active space based on chemical intuition-based hierarchical orbital ordering, which is called as ML-DMRG with its self-consistent field (SCF) variant ML-DMRG-SCF. Ground and excited state calculations of H2O, N2, indole, and Cr2 with comparisons to DMRG references using fixed number of kept states (M) illustrate that ML-type DMRG calculations can obtain noticeable efficiency gains. It is also shown that the orbital re-ordering based on hierarchical multiple active subspaces may be beneficial for reducing computational time for not only ML-DMRG calculations but also DMRG ones with fixed M values.

摘要

密度矩阵重整化群(DMRG)方法能够处理由数十个轨道组成的大活性空间,如今已被广泛用作传统基于完全活性空间(CAS)方法的有效补充。在本文中,我们基于基于化学直觉的分层轨道排序,提出了一种对活性空间进行多级(ML)控制的DMRG算法,其自洽场(SCF)变体称为ML-DMRG-SCF。通过对H2O、N2、吲哚和Cr2进行基态和激发态计算,并与使用固定保留态数量(M)的DMRG参考文献进行比较,结果表明ML型DMRG计算可以显著提高效率。还表明,基于分层多个活性子空间的轨道重新排序不仅可能有利于减少ML-DMRG计算的计算时间,而且对于具有固定M值的DMRG计算也可能有益。

相似文献

1
Density-matrix renormalization group algorithm with multi-level active space.
J Chem Phys. 2015 Jul 21;143(3):034105. doi: 10.1063/1.4926833.
8
Automatic Selection of Active Orbitals from Generalized Valence Bond Orbitals.
J Phys Chem A. 2020 Oct 8;124(40):8321-8329. doi: 10.1021/acs.jpca.0c05216. Epub 2020 Sep 23.
10
Communication: DMRG-SCF study of the singlet, triplet, and quintet states of oxo-Mn(Salen).
J Chem Phys. 2014 Jun 28;140(24):241103. doi: 10.1063/1.4885815.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验