Suppr超能文献

钒酸锰杂化物:有机配体对其结构、热稳定性、光学性质及光催化活性的影响

Manganese-Vanadate Hybrids: Impact of Organic Ligands on Their Structures, Thermal Stabilities, Optical Properties, and Photocatalytic Activities.

作者信息

Luo Lan, Zeng Yuhan, Li Le, Luo Zhixiang, Smirnova Tatyana I, Maggard Paul A

机构信息

†Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States.

‡Department of Physics and Astronomy, University of North Carolina at Chapel Hill, North Carolina 27599-3255, United States.

出版信息

Inorg Chem. 2015 Aug 3;54(15):7388-401. doi: 10.1021/acs.inorgchem.5b00931. Epub 2015 Jul 23.

Abstract

Manganese(II)-vanadate(V)/organic hybrids were prepared in high purity using four different N-donor organic ligands (2,6:2',2″-terpyridine = terpy, 2,2'-bipyrimidine = bpym, o-phenanthroline = o-phen, and 4,4'-bipyridine = 4,4'-bpy), and their crystalline structures, thermal stabilities, optical properties, photocatalytic activities and electronic structures were investigated as a function of the organic ligand. Hydrothermal reactions were employed that targeted a 1:2 molar ratio of Mn(II)/V(V), yielding four hybrid solids with the compositions of Mn(terpy)V2O6·H2O (I), Mn2(bpym)V4O12·0.6H2O (II), Mn(H2O)(o-phen)V2O6 (III), and Mn(4,4'-bpy)V2O6·1.16H2O (IV). The inorganic component within these hybrid compounds, that is, [MnV2O6], forms infinite chains in I and layers in II, III, and IV. In each case, the organic ligand preferentially coordinates to the Mn(II) cations within their respective structures, either as chelating and three-coordinate (mer isomer in I) or two-coordinate (cis isomers in II and III), or as bridging and two coordinate (trans isomer in IV). The terminating ligands in I (terpy) and III (o-phen) yield nonbridged "MnV2O6" chains and layers, respectively, while the bridging ligands in II (bpym) and IV (4,4'-bpy) result in three-dimensional, pillared hybrid networks. The coordination number of the ligand, that is, two- or three-coordinate, has the predominant effect on the dimensionality of the inorganic component, while the connectivity of the combined metal-oxide/organic network is determined by the chelating versus bridging ligand coordination modes. Each hybrid compound decomposes into crystalline MnV2O6 upon heating in air with specific surface areas from ∼7 m(2)/g for III to ∼41 m(2)/g for IV, depending on the extent of structural collapse as the lattice water is removed. All hybrid compounds exhibit visible-light bandgap sizes from ∼1.7 to ∼2.0 eV, decreasing with the increased dimensionality of the [MnV2O6] network in the order of I > II ≈ III > IV. These bandgap sizes are smaller by ∼0.1-0.4 eV in comparison to related vanadate hybrids, owing to the addition of the higher-energy 3d orbital contributions from the Mn(II) cations. Each compound also exhibits temperature-dependent photocatalytic activities for hydrogen production under visible-light irradiation in 20% methanol solutions, with threshold temperatures of ∼30 °C for III, ∼36 °C for I, and ∼40 °C for II, IV, and V4O10(o-phen)2. Hydrogen production rates are ∼142 μmol H2 g(-1)·h(-1), ∼673 μmol H2 g(-1)·h(-1), ∼91 μmol H2 g(-1)·h(-1), and ∼218 μmol H2 g(-1)·h(-1) at 40 °C, for I, II, III, and IV, respectively, increasing with the oxide/organic network connectivity. In contrast, the related V4O10(o-phen)2 exhibits a much lower photocatalytic rate of ∼36 H2 g(-1)·h(-1). Electronic structure calculations based on density-functional theory methods show that the valence band edges are primarily derived from the half-filled Mn 3d(5) orbitals in each, while the conduction band edges are primarily comprised of contributions from the empty V 3d(0) orbitals in I and II and from ligand π* orbitals in III. Thus, the coordinating organic ligands are shown to significantly affect the local and extended structural features, which has elucidated the underlying relationships to their photocatalytic activities, visible-light bandgap sizes, electronic structures, and thermal stabilities.

摘要

使用四种不同的含氮有机配体(2,6:2',2″-三联吡啶 = terpy、2,2'-联嘧啶 = bpym、邻菲罗啉 = o-phen 和 4,4'-联吡啶 = 4,4'-bpy)制备了高纯度的锰(II)-钒(V)/有机杂化物,并研究了它们的晶体结构、热稳定性、光学性质、光催化活性和电子结构与有机配体的关系。采用水热反应,目标是使 Mn(II)/V(V)的摩尔比为 1:2,得到四种杂化固体,其组成为 Mn(terpy)V2O6·H2O(I)、Mn2(bpym)V4O12·0.6H2O(II)、Mn(H2O)(o-phen)V2O6(III)和 Mn(4,4'-bpy)V2O6·1.16H2O(IV)。这些杂化化合物中的无机成分,即[MnV2O6]在 I 中形成无限链状结构,在 II、III 和 IV 中形成层状结构。在每种情况下有机配体优先与各自结构中的 Mn(II)阳离子配位,要么作为螯合和三配位(I 中的面式异构体)或二配位(II 和 III 中的顺式异构体),要么作为桥连和二配位(IV 中的反式异构体)。I(terpy)和 III(o-phen)中的端基配体分别产生非桥连的“MnV2O6”链和层,而 II(bpym)和 IV(4,4'-bpy)中的桥连配体导致三维柱状杂化网络。配体的配位数,即二配位或三配位,对无机组分的维度起主要作用,而金属氧化物/有机网络的连通性由螯合与桥连配体的配位模式决定。每种杂化化合物在空气中加热时分解为结晶的 MnV2O6,比表面积从 III 的约 7 m²/g 到 IV 的约 41 m²/g,这取决于随着晶格水去除结构坍塌的程度。所有杂化化合物的可见光带隙尺寸约为 1.7 至 2.0 eV,随着[MnV2O6]网络维度的增加按 I > II ≈ III > IV 的顺序减小。与相关的钒酸盐杂化物相比,这些带隙尺寸小约 0.1 - 0.4 eV,这是由于 Mn(II)阳离子的高能 3d 轨道贡献的增加。每种化合物在 20%甲醇溶液中可见光照射下还表现出温度依赖性的产氢光催化活性,III 的阈值温度约为 30°C,I 约为 36°C,II、IV 和 V4O10(o-phen)2 约为 40°C。在 40°C 时,I、II、III 和 IV 的产氢速率分别约为 142 μmol H2 g⁻¹·h⁻¹、673 μmol H2 g⁻¹·h⁻¹、91 μmol H2 g⁻¹·h⁻¹ 和 218 μmol H2 g⁻¹·h⁻¹,随着氧化物/有机网络连通性的增加而增加。相比之下,相关的 V4O10(o-phen)2 表现出低得多的光催化速率,约为 36 μmol H2 g⁻¹·h⁻¹。基于密度泛函理论方法的电子结构计算表明,价带边缘主要源自每种情况下半充满的 Mn 3d⁵轨道,而导带边缘主要由 I 和 II 中空的 V 3d⁰轨道以及 III 中配体 π*轨道的贡献组成。因此,配位有机配体被证明会显著影响局部和扩展结构特征,这阐明了它们与光催化活性、可见光带隙尺寸、电子结构和热稳定性之间的潜在关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验