Suppr超能文献

常见单核苷酸多态性次要等位基因的富集与帕金森病风险预测的改善

Enrichment of Minor Alleles of Common SNPs and Improved Risk Prediction for Parkinson's Disease.

作者信息

Zhu Zuobin, Yuan Dejian, Luo Denghui, Lu Xitong, Huang Shi

机构信息

State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China.

出版信息

PLoS One. 2015 Jul 24;10(7):e0133421. doi: 10.1371/journal.pone.0133421. eCollection 2015.

Abstract

Parkinson disease (PD) is the second most common neurodegenerative disorder in the aged population and thought to involve many genetic loci. While a number of individual single nucleotide polymorphisms (SNPs) have been linked with PD, many remain to be found and no known markers or combinations of them have a useful predictive value for sporadic PD cases. The collective effects of genome wide minor alleles of common SNPs, or the minor allele content (MAC) in an individual, have recently been shown to be linked with quantitative variations of numerous complex traits in model organisms with higher MAC more likely linked with lower fitness. Here we found that PD cases had higher MAC than matched controls. A set of 37564 SNPs with MA (MAF < 0.4) more common in cases (P < 0.05) was found to have the best predictive accuracy. A weighted risk score calculated by using this set can predict 2% of PD cases (100% specificity), which is comparable to using familial PD genes to identify familial PD cases. These results suggest a novel genetic component in PD and provide a useful genetic method to identify a small fraction of PD cases.

摘要

帕金森病(PD)是老年人群中第二常见的神经退行性疾病,被认为涉及多个基因位点。虽然一些单个单核苷酸多态性(SNP)已与PD相关联,但仍有许多有待发现,并且没有已知的标记或它们的组合对散发性PD病例具有有用的预测价值。最近研究表明,常见SNP的全基因组次要等位基因的集体效应,或个体中的次要等位基因含量(MAC),与模式生物中许多复杂性状的定量变化相关,MAC越高,与适应性越低的关联可能性越大。在此我们发现,PD病例的MAC高于匹配的对照。发现一组在病例中更常见(P < 0.05)的37564个MA(MAF < 0.4)SNP具有最佳预测准确性。使用该组计算的加权风险评分可预测2%的PD病例(特异性为100%),这与使用家族性PD基因识别家族性PD病例相当。这些结果提示了PD中的一种新的遗传成分,并提供了一种有用的遗传方法来识别一小部分PD病例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fa5/4514478/960d46ac7398/pone.0133421.g001.jpg

相似文献

1
Enrichment of Minor Alleles of Common SNPs and Improved Risk Prediction for Parkinson's Disease.
PLoS One. 2015 Jul 24;10(7):e0133421. doi: 10.1371/journal.pone.0133421. eCollection 2015.
3
Collective effects of common SNPs and risk prediction in lung cancer.
Heredity (Edinb). 2018 Dec;121(6):537-547. doi: 10.1038/s41437-018-0063-4. Epub 2018 Mar 10.
4
Association between Parkinson's disease and the HLA-DRB1 locus.
Mov Disord. 2012 Aug;27(9):1104-10. doi: 10.1002/mds.25035. Epub 2012 Jul 13.
6
Alzheimer's disease and Parkinson's disease genome-wide association study top hits and risk of Parkinson's disease in Korean population.
Neurobiol Aging. 2013 Nov;34(11):2695.e1-7. doi: 10.1016/j.neurobiolaging.2013.05.022. Epub 2013 Jun 29.
7
Enrichment of minor allele of SNPs and genetic prediction of type 2 diabetes risk in British population.
PLoS One. 2017 Nov 3;12(11):e0187644. doi: 10.1371/journal.pone.0187644. eCollection 2017.
8
SNCA polymorphisms, smoking, and sporadic Parkinson's disease in Japanese.
Parkinsonism Relat Disord. 2012 Jun;18(5):557-61. doi: 10.1016/j.parkreldis.2012.02.016. Epub 2012 Mar 17.
9
Genetic association study of PINK1 coding polymorphisms in Parkinson's disease.
Neurosci Lett. 2004 Dec 6;372(3):226-9. doi: 10.1016/j.neulet.2004.09.043.
10
Association of GCH1 and MIR4697, but not SIPA1L2 and VPS13C polymorphisms, with Parkinson's disease in Taiwan.
Neurobiol Aging. 2016 Mar;39:221.e1-5. doi: 10.1016/j.neurobiolaging.2015.12.016. Epub 2015 Dec 30.

引用本文的文献

1
The collective effects of genetic variants and complex traits.
J Hum Genet. 2023 Apr;68(4):255-262. doi: 10.1038/s10038-022-01105-1. Epub 2022 Dec 13.
2
Multi-biomarker is an early-stage predictor for progression of Coronavirus disease 2019 (COVID-19) infection.
Int J Med Sci. 2021 May 27;18(13):2789-2798. doi: 10.7150/ijms.58742. eCollection 2021.
4
Enrichment of minor allele of SNPs and genetic prediction of type 2 diabetes risk in British population.
PLoS One. 2017 Nov 3;12(11):e0187644. doi: 10.1371/journal.pone.0187644. eCollection 2017.
5
Accumulation of minor alleles and risk prediction in schizophrenia.
Sci Rep. 2017 Sep 15;7(1):11661. doi: 10.1038/s41598-017-12104-0.
6
Rules for resolving Mendelian inconsistencies in nuclear pedigrees typed for two-allele markers.
PLoS One. 2017 Mar 2;12(3):e0172807. doi: 10.1371/journal.pone.0172807. eCollection 2017.

本文引用的文献

1
Collective effects of SNPs on transgenerational inheritance in Caenorhabditis elegans and budding yeast.
Genomics. 2015 Jul;106(1):23-9. doi: 10.1016/j.ygeno.2015.04.002. Epub 2015 Apr 13.
2
A micropeptide encoded by a putative long noncoding RNA regulates muscle performance.
Cell. 2015 Feb 12;160(4):595-606. doi: 10.1016/j.cell.2015.01.009. Epub 2015 Jan 29.
3
Scoring the collective effects of SNPs: association of minor alleles with complex traits in model organisms.
Sci China Life Sci. 2014 Sep;57(9):876-88. doi: 10.1007/s11427-014-4704-4. Epub 2014 Aug 7.
4
5
MDR1 synonymous polymorphisms alter transporter specificity and protein stability in a stable epithelial monolayer.
Cancer Res. 2014 Jan 15;74(2):598-608. doi: 10.1158/0008-5472.CAN-13-2064. Epub 2013 Dec 4.
6
The genetic equidistance result: misreading by the molecular clock and neutral theory and reinterpretation nearly half of a century later.
Sci China Life Sci. 2013 Mar;56(3):254-61. doi: 10.1007/s11427-013-4452-x. Epub 2013 Mar 23.
7
Risk prediction for complex diseases: application to Parkinson disease.
Genet Med. 2013 May;15(5):361-7. doi: 10.1038/gim.2012.109. Epub 2012 Dec 6.
8
An integrated encyclopedia of DNA elements in the human genome.
Nature. 2012 Sep 6;489(7414):57-74. doi: 10.1038/nature11247.
9
Rare and common variants: twenty arguments.
Nat Rev Genet. 2012 Jan 18;13(2):135-45. doi: 10.1038/nrg3118.
10
Five years of GWAS discovery.
Am J Hum Genet. 2012 Jan 13;90(1):7-24. doi: 10.1016/j.ajhg.2011.11.029.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验