Suppr超能文献

化学修饰的树枝状淀粉:一种用于小干扰RNA递送的新型纳米材料。

Chemically Modified Dendritic Starch: A Novel Nanomaterial for siRNA Delivery.

作者信息

Engelberth Sarah A, Hempel Nadine, Bergkvist Magnus

机构信息

†Nanobioscience Constellation, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York 12203, United States.

‡Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States.

出版信息

Bioconjug Chem. 2015 Aug 19;26(8):1766-74. doi: 10.1021/acs.bioconjchem.5b00313. Epub 2015 Aug 11.

Abstract

Nanostructured starches are naturally derived nanomaterials that can be chemically modified to allow for the introduction of functional groups, enhancing their potential for drug delivery and other biotechnology applications. In this proof of concept study, we investigate chemically modified, enzymatically synthesized glycogen (ESG) nanodendrites as a biodegradable, biocompatible, siRNA delivery system. Commercially available ESG was modified using glycidyltrimethylammonium chloride (GTMA), introducing quaternary ammonium groups via an epoxide ring opening reaction. This cationic ESG (cESG) electrostatically bound siRNA and successfully knocked down protein expression in an in vitro ovarian clear cell carcinoma model. The construct exhibited sustained siRNA delivery for up to 6 days while exhibiting less toxicity than a common liposome-based siRNA delivery reagent, Lipofectamine RNAiMAX. These promising results set the stage for the use of dendritic starch as a cost-effective, easily modifiable nanoscale delivery system for a diverse range of cargo including nucleic acids and therapeutic compounds.

摘要

纳米结构淀粉是天然衍生的纳米材料,可通过化学修饰引入官能团,增强其在药物递送和其他生物技术应用方面的潜力。在这项概念验证研究中,我们研究了经化学修饰的酶促合成糖原(ESG)纳米树枝状分子作为一种可生物降解、生物相容的siRNA递送系统。使用缩水甘油基三甲基氯化铵(GTMA)对市售ESG进行修饰,通过环氧开环反应引入季铵基团。这种阳离子ESG(cESG)通过静电作用结合siRNA,并在体外卵巢透明细胞癌模型中成功下调了蛋白表达。该构建体可实现长达6天的持续siRNA递送,同时与常用的基于脂质体的siRNA递送试剂Lipofectamine RNAiMAX相比,毒性更小。这些令人鼓舞的结果为将树枝状淀粉用作一种经济高效、易于修饰的纳米级递送系统奠定了基础,该系统可用于递送包括核酸和治疗性化合物在内的多种货物。

相似文献

1
Chemically Modified Dendritic Starch: A Novel Nanomaterial for siRNA Delivery.
Bioconjug Chem. 2015 Aug 19;26(8):1766-74. doi: 10.1021/acs.bioconjchem.5b00313. Epub 2015 Aug 11.
2
Cationic dendritic starch as a vehicle for photodynamic therapy and siRNA co-delivery.
J Photochem Photobiol B. 2017 Mar;168:185-192. doi: 10.1016/j.jphotobiol.2017.02.013. Epub 2017 Feb 20.
3
Quaternized starch-based carrier for siRNA delivery: from cellular uptake to gene silencing.
J Control Release. 2014 Jul 10;185:109-20. doi: 10.1016/j.jconrel.2014.04.031. Epub 2014 Apr 29.
4
DOTAP functionalizing single-walled carbon nanotubes as non-viral vectors for efficient intracellular siRNA delivery.
Drug Deliv. 2016;23(3):840-8. doi: 10.3109/10717544.2014.919542. Epub 2015 Sep 4.
6
Anionic amino acid-derived cationic lipid for siRNA delivery.
J Control Release. 2009 Dec 16;140(3):268-76. doi: 10.1016/j.jconrel.2009.06.017. Epub 2009 Jun 28.
7
Lipoplexes versus nanoparticles: pDNA/siRNA delivery.
Drug Deliv. 2013 Feb;20(2):57-64. doi: 10.3109/10717544.2012.752419.
8
Enhanced siRNA delivery using cationic liposomes with new polyarginine-conjugated PEG-lipid.
Int J Pharm. 2010 Jun 15;392(1-2):141-7. doi: 10.1016/j.ijpharm.2010.03.047. Epub 2010 Mar 25.
10
Multifunctional nanocarrier based on clay nanotubes for efficient intracellular siRNA delivery and gene silencing.
J Biomater Appl. 2014 Apr;28(8):1180-9. doi: 10.1177/0885328213501215. Epub 2013 Aug 28.

引用本文的文献

1
2
Elucidating siRNA Cellular Delivery Mechanism Mediated by Quaternized Starch Nanoparticles.
Small. 2024 Dec;20(51):e2405524. doi: 10.1002/smll.202405524. Epub 2024 Oct 2.
3
Biologically-derived nanomaterials for targeted therapeutic delivery to the brain.
Sci Prog. 2018 Sep 1;101(3):273-292. doi: 10.3184/003685018X15306123582346. Epub 2018 Aug 2.
4
Cationic dendritic starch as a vehicle for photodynamic therapy and siRNA co-delivery.
J Photochem Photobiol B. 2017 Mar;168:185-192. doi: 10.1016/j.jphotobiol.2017.02.013. Epub 2017 Feb 20.

本文引用的文献

1
Routine Western blot to check autophagic flux: cautions and recommendations.
Anal Biochem. 2015 May 15;477:13-20. doi: 10.1016/j.ab.2015.02.020. Epub 2015 Mar 4.
2
Dendrimer-like alpha-d-glucan nanoparticles activate dendritic cells and are effective vaccine adjuvants.
J Control Release. 2015 Apr 28;204:51-9. doi: 10.1016/j.jconrel.2015.03.002. Epub 2015 Mar 3.
3
Glycogen metabolism in cancer.
Biochem Pharmacol. 2014 Nov 1;92(1):3-11. doi: 10.1016/j.bcp.2014.09.001. Epub 2014 Sep 16.
5
Quaternized starch-based carrier for siRNA delivery: from cellular uptake to gene silencing.
J Control Release. 2014 Jul 10;185:109-20. doi: 10.1016/j.jconrel.2014.04.031. Epub 2014 Apr 29.
6
Chitosan-based nanomaterials: a state-of-the-art review.
Int J Biol Macromol. 2013 Aug;59:46-58. doi: 10.1016/j.ijbiomac.2013.04.043. Epub 2013 Apr 19.
8
Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells.
Cell Metab. 2012 Dec 5;16(6):751-64. doi: 10.1016/j.cmet.2012.10.017. Epub 2012 Nov 21.
9
Designing carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide.
J Control Release. 2011 Mar 10;150(2):150-6. doi: 10.1016/j.jconrel.2010.11.024. Epub 2010 Nov 27.
10
Antimicrobial properties of chitosan and mode of action: a state of the art review.
Int J Food Microbiol. 2010 Nov 15;144(1):51-63. doi: 10.1016/j.ijfoodmicro.2010.09.012. Epub 2010 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验