Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE), UMR CNRS 7730, AMU (Aix-Marseille Université), BP 80, 13545 Aix en Provence, France.
UnB, IG/GMP-ICC Centro, Campus Universitario Darcy Ribeiro, 70919-970, Brasilia-DF, Brazil.
Sci Total Environ. 2015 Dec 1;536:306-315. doi: 10.1016/j.scitotenv.2015.07.065. Epub 2015 Jul 28.
Arsenic concentration in the pore water of paddy fields (Csoln) irrigated with arsenic-rich groundwater is a key parameter in arsenic uptake by rice. Pore water extracts from cores and in situ deployment of DET and DGT probes were used to measure the arsenic concentration in the pore water. Ferrihydrite (Fe) and titanium dioxide (Ti) were used as DGT binding agents. Six sampling events during different growing stages of the rice, inducing different biogeochemical conditions, were performed in one rice field. A time series of DGT experiments allow the determination of an in situ arsenic diffusion coefficient in the diffusive gel (3.34×10(-6) cm(2) s(-1)) needed to calculate the so-called CDGT(Fe) and CDGT(Ti) concentrations. Over 3 days of a given sampling event and for cores sampled at intervals smaller than 50 cm, great variability in arsenic Csoln concentrations between vertical profiles was observed, with maxima of concentrations varying from 690 to 2800 μg L(-1). Comparisons between arsenic measured Csol and CDET and calculated CDGT(Fe) and CDGT(Ti) concentrations show either, in a few cases, roughly similar vertical profiles, or in other cases, significantly different profiles. An established iron oxyhydroxide precipitation in the DET gel may explain why measured arsenic CDET concentrations occasionally exceeded Csoln. The large spread in results suggests limitations to the use of DET and type of DGT probes used here for similarly representing the spatio-temporal variations of arsenic content in soil pore water in specific environmental such as paddy soils.
稻田中受富含砷地下水灌溉的孔隙水中的砷浓度(Csoln)是水稻砷吸收的关键参数。使用从芯样中提取的孔隙水提取物和原位部署的 DET 和 DGT 探针来测量孔隙水中的砷浓度。使用水铁矿(Fe)和二氧化钛(Ti)作为 DGT 结合剂。在一个稻田中,在水稻的不同生长阶段进行了 6 次采样事件,诱导了不同的生物地球化学条件。DGT 实验的时间序列允许确定在扩散凝胶中的原位砷扩散系数(3.34×10(-6)cm(2)s(-1)),该系数用于计算所谓的 CDGT(Fe)和 CDGT(Ti)浓度。在给定采样事件的 3 天内,对于在 50cm 以下间隔采样的芯样,观察到垂直剖面之间的 Csoln 浓度存在很大的变化性,浓度最大值从 690μg/L 到 2800μg/L 不等。砷测量的 Csol 和 CDET 与计算的 CDGT(Fe)和 CDGT(Ti)浓度之间的比较表明,在少数情况下,垂直剖面大致相似,而在其他情况下,剖面明显不同。在 DET 凝胶中形成的稳定铁氢氧化物沉淀可能解释了为什么偶尔会测量到的砷 CDET 浓度超过 Csoln。结果的广泛分散表明,在特定环境(如稻田)中,DET 和这里使用的 DGT 探针的类型在代表土壤孔隙水中砷含量的时空变化方面存在局限性。