Kleshchonok Andrii, Gutierrez Rafael, Cuniberti Gianaurelio
Institute for Materials Science, Dresden University of Technology, Germany.
Nanoscale. 2015 Sep 7;7(33):13967-73. doi: 10.1039/c5nr01251a.
Dangling bond structures created on H-passivated silicon surfaces offer a novel platform for engineering planar nanoscale circuits, compatible with conventional semiconductor technologies. In this investigation we focus on the electronic structure and quantum transport signatures of dangling bond loops built on H-passivated Si(100) surfaces contacted by carbon nanoribbons, thus leading to a two-terminal planar, nanoscale setup. The computational studies were carried out to rationalize the influence of the local atomic-scale contacts of the dangling bond system to the mesoscopic electrodes as well as the possibility of revealing quantum interference effects in the dangling bond loops. Our results reveal a strong sensitivity of the low-energy quantum transmission to the loop topology and to the atomistic details of the electrode-loop contact. Varying the length of the loop or the spatial position of at least one of the electrodes has a drastic impact on the quantum interference pattern; depending on whether constructive or destructive interference within the loop takes place, the conductance of the system can be tuned over several orders of magnitude, thus suggesting the possibility of exploiting such quantum mechanical effects in the design of two-dimensional, atomic-scale electronic devices such as logic gates.
在氢钝化硅表面形成的悬空键结构为设计与传统半导体技术兼容的平面纳米级电路提供了一个新颖的平台。在本研究中,我们专注于由碳纳米带接触的氢钝化Si(100)表面上构建的悬空键环的电子结构和量子传输特征,从而形成一种两终端平面纳米级装置。进行计算研究是为了阐明悬空键系统的局部原子尺度接触对介观电极的影响,以及揭示悬空键环中量子干涉效应的可能性。我们的结果表明,低能量量子传输对环拓扑结构以及电极 - 环接触的原子细节具有很强的敏感性。改变环的长度或至少一个电极的空间位置会对量子干涉图案产生剧烈影响;根据环内发生相长干涉还是相消干涉,系统的电导可以在几个数量级上进行调节,这表明在诸如逻辑门等二维原子尺度电子器件的设计中利用这种量子力学效应是可能的。