Suppr超能文献

耦合噪声振荡器异步状态分析的更新方法。

Renewal Approach to the Analysis of the Asynchronous State for Coupled Noisy Oscillators.

机构信息

Neuroinformatics & Theoretical Neuroscience, Freie Universität Berlin and BCCN-Berlin, 14195 Berlin, Germany.

Centre de Neurophysique Physiologie et Pathologie, Université Paris Descartes and CNRS UMR 8119, 75270 Paris Cedex 06, France.

出版信息

Phys Rev Lett. 2015 Jul 17;115(3):038103. doi: 10.1103/PhysRevLett.115.038103. Epub 2015 Jul 16.

Abstract

We develop a framework in which the activity of nonlinear pulse-coupled oscillators is posed within the renewal theory. In this approach, the evolution of the interevent density allows for a self-consistent calculation that determines the asynchronous state and its stability. This framework can readily be extended to the analysis of systems with more state variables and provides a population density treatment to evolve them in their thermodynamical limits. To demonstrate this we study a nonlinear pulse-coupled system, where couplings are dynamic and activity dependent. We investigate its stability and numerically study the nonequilibrium behavior of the system after the bifurcation. We show that this system undergoes a supercritical Hopf bifurcation to collective synchronization.

摘要

我们开发了一个框架,其中将非线性脉冲耦合振荡器的活动置于更新理论中。在这种方法中,事件间密度的演化允许进行自洽计算,从而确定异步状态及其稳定性。该框架可以很容易地扩展到具有更多状态变量的系统分析,并提供群体密度处理,以在热力学极限下对其进行演化。为了证明这一点,我们研究了一个非线性脉冲耦合系统,其中耦合是动态的且与活动相关。我们研究了它的稳定性,并数值研究了分叉后系统的非平衡行为。我们表明,该系统经历了一个超临界 Hopf 分岔到集体同步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验